Process Mining in Banking Logistics: From Identification to Improvement
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 4
فایل این مقاله در 24 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JITM-17-4_001
تاریخ نمایه سازی: 29 دی 1404
چکیده مقاله:
This paper investigates the application of Process Mining (PM) techniques to redesign and optimize logistics processes within an Iranian bank. The primary aim is to identify inefficiencies, bottlenecks, and process deviations using real-world event log data and to provide data-driven recommendations for process improvement. Data comprising ۳۵,۶۴۲ event reports related to ۱۶,۴۹۰ logistics process workflows were extracted from the bank's automation and correspondence systems over six months in ۲۰۲۲. Disco ۲.۱۴ was used for data analysis. Results revealed that only ۳.۶% of product demands conformed to the predefined process model, indicating high process variability and improvement potential. Analyses also showed the average process duration was ۵.۷ days, exceeding the bank's internal benchmark (three to five days), and the process fulfillment ratio was ۸۳.۳%, falling short of the desired target of ۹۵%. Key inefficiencies identified included excessive waiting times for unfulfilled demands (averaging ۳۱۵.۷ days) and bottlenecks in the "Registering the purchase invoice" and "Registering the warehouse receipt" activities. Drawing on these findings, suggestions were proposed to optimize the procurement process, automate manual efforts, and improve alignment with the defined process model. This study contributes to the existing knowledge by providing an empirical case study of PM application in a specific context within the banking industry. The findings underscore the importance of monitoring and managing process conformance, as well as addressing excessive waiting times to improve customer satisfaction and operational efficiency. Limitations of this study include reliance on data from a single bank and a focus on logistics processes. Future research could focus on investigating root causes of process deviations, using PM for predictive analysis, and evaluating the impact of process improvements on key performance indicators.
کلیدواژه ها:
نویسندگان
Asadinia
M.A. of Industrial Management, Faculty of Management and Accounting, Allameh Tabatabai University, Tehran, Iran.
Taghavifard
Prof., Department of Industrial Management, Faculty of Management and Accounting, Allameh Tabatabai University, Tehran, Iran.
Raisi Vanani
Associate Prof., Department of Industrial Management, Faculty of Management and Accounting, Allameh Tabatabai University, Tehran, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :