Nonlinear Optimization Problems with Bipolar Fuzzy Relation Equations using Neural Networks

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 3

فایل این مقاله در 18 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_GADM-10-2_007

تاریخ نمایه سازی: 24 دی 1404

چکیده مقاله:

In this paper, we present a novel application of neural networks for solving nonlinear optimization problems subject to bipolar max-min fuzzy relation equation constraints. The feasible solution set for these problems is generally non-convex, which makes conventional nonlinear optimization methods less suitable for solving them. To address this challenge, we propose the use of neural networks {and some rules for simplification of the problem}. To find an input vector \( x \in [۰,۱]^n \) that satisfies the constraints and minimizes (or maximizes) the objective function, \( n \) neural networks are trained simultaneously. Each neural network identifies the corresponding variable of the vector \( x \in [۰,۱]^n \). The loss function integrates both the constraints and the objective function. Our experiments demonstrate that the proposed method can solve these problems with high accuracy and reasonable computational time. The proposed method is compared to the existing methods.

کلیدواژه ها:

نویسندگان

Ali Abbasi Molai

School of Mathematics and Computer Science, Damghan University, Damghan, Iran

Hassan Dana Mazraeh

School of Mathematics and Computer Science, Damghan University, Damghan, Iran

Kourosh Parand

Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran; International Business University,Toronto, Canada

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • E. Sanchez, Resolution of composite fuzzy relation equations, ۳۰, ۳۸–۴۸, ...
  • S.-C. Fang and G. Li, Solving fuzzy relation equations with ...
  • L. Jian-Xin, A new algorithm for minimizing a linear objective ...
  • Y.-K. Wu and S.-M. Guu, Minimizing a linear function under ...
  • F.-F. Guo and Z.-Q. Xia, An algorithm for solving optimization ...
  • S.-M. Guu and Y.-K. Wu, Minimizing a linear objective function ...
  • Y.-K. Wu, S.-M. Guu, and J.-C. Liu, An accelerated approach ...
  • J. Lu and S.-C. Fang, Solving nonlinear optimization problems with ...
  • E. Khorram and R. Hassanzadeh, Solving nonlinear optimization problems subjected ...
  • R. Hassanzadeh, E. Khorram, I. Mahdavi, and N. Mahdavi-Amiri, A ...
  • Y.-K. Wu, S.-M. Guu, and J.-C. Liu, Reducing the search ...
  • P. Li and S.-C. Fang, Minimizing a linear fractional function ...
  • A. Abbasi Molai, A new algorithm for resolution of the ...
  • B. Hedayatfar, A. Abbasi Molai, and S. Aliannezhadi, Separable programming ...
  • X. Yang, X.-G. Zhou, and B.-Y. Cao, Latticized linear programming ...
  • X.-G. Zhou, B.-Y. Cao, and X. Yang, The set of ...
  • Z. Wang, G. Zhu, and X. Yang, Tri-composed fuzzy relation ...
  • J. Qiu, G. Li, and X. Yang, Weighted-minimax programming subject ...
  • X. Yang, Random-term-absent addition-min fuzzy relation inequalities and their lexicographic ...
  • J. Qiu, G. Li, and X. Yang, Arbitrary-term-absent max-product fuzzy ...
  • X. Yang, J. Qiu, H. Guo, and X. Yang, Fuzzy ...
  • H. Lin and X. Yang, Dichotomy algorithm for solving weighted ...
  • X.-G. Zhou, X. Yang, and B.-Y. Cao, Posynomial geometric programming ...
  • X. Yang, X.-G. Zhou, and B.-Y. Cao, Single-variable term semi-latticized ...
  • A. Ghodousian and A. Babalhavaeji, An efficient genetic algorithm for ...
  • A. Ghodousian, M. Naeeimi, and A. Babalhavaeji, Nonlinear optimization problem ...
  • A. Thapar, D. Pandey, and S. Gaur, Optimization of linear ...
  • A. Ghodousian and M. Raeisian Parvari, A modified pso algorithm ...
  • S. Freson, B. De Baets, and H. De Meyer, Linear ...
  • P. Li and Q. Jin, Fuzzy relational equations with min-biimplication ...
  • P. Li and Y. Liu, Linear optimization with bipolar fuzzy ...
  • C.-C. Liu, Y.-Y. Lur, and Y.-K. Wu, Linear optimization of ...
  • X. Yang, Resolution of bipolar fuzzy relation equations with max-ukasiewicz ...
  • S. Aliannezhadi, A. Abbasi Molai, and B. Hedayatfar, Linear optimization ...
  • S. Aliannezhadi and A. Abbasi Molai, A new algorithm for ...
  • A. Abbasi Molai, A covering-based algorithm for resolution of linear ...
  • A. Abbasi Molai, A quadratic optimization problem with bipolar fuzzy ...
  • S. Aliannezhadi and A. Abbasi Molai, A new algorithm for ...
  • S. Aliannezhadi, S. Ardalan, and A. Abbasi Molai, Maximizing a ...
  • J. Zhou, Y. Yu, Y. Liu, and Y. Zhang, Solving ...
  • A. Ghodousian and Z. Sara, A two - phase - ...
  • H. Dana Mazraeh and A. Abbasi Molai, Resolution of nonlinear ...
  • M. Raissi, P. Perdikaris, and G. Karniadakis, Physics-informed neural networks: ...
  • H. Dana Mazraeh and K. Parand, A three-stage framework combining ...
  • H. Dana Mazraeh and K. Parand, Approximate symbolic solutions to ...
  • H. Dana Mazraeh and K. Parand, An innovative combination of ...
  • H. Dana Mazraeh and K. Parand, Gepinn: An innovative hybrid ...
  • S. Raschka, Y. H. Y. (H.) Liu, and V. Mirjalili, ...
  • C. C. Aggarwal, Neural Networks and Deep Learning. Springer Nature ...
  • A. Abbasi Molai and H. Dana Mazraeh, A modified imperialist ...
  • نمایش کامل مراجع