Pneumonia detection in chest X-ray images using Convolutional Neural Network and fuzzy VIKOR

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 15

فایل این مقاله در 21 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJFS-22-5_010

تاریخ نمایه سازی: 16 دی 1404

چکیده مقاله:

Pneumonia is a life-threatening respiratory disease that requires early and accurate diagnosis for effective treatment and reduced complications. However, conventional diagnostic methods such as PCR are often time-consuming, equipment-dependent, and limited to specialized medical centers. This study introduces a novel anomaly detection framework for pneumonia diagnosis using advanced machine learning techniques applied to chest X-ray images. To enhance classification performance, the framework integrates several feature selection methods, including Correlation-based Feature Selection (CFS) to evaluate feature relevance, Fisher Score to rank features based on discriminative power, Maximum Information Coefficient (MIC) to capture complex dependencies, and Local Learning-based Correlation Feature Selection (LLCFS) to improve accuracy by considering local feature correlations. To further enhance classification performance, this study introduces the first-ever application of Fuzzy VIKOR in pneumonia detection. This fuzzy logic-based ensemble method effectively handles uncertainty in medical imaging data, leading to more balanced decision-making when dealing with conflicting information. The proposed model was trained on a chest X-ray dataset and evaluated using key classification metrics, including accuracy, recall, precision, and F۱-score. Experimental results confirm that the model outperforms baseline methods across all metrics, achieving an accuracy of ۹۸.۳۴%. These findings validate the effectiveness of the proposed framework and highlight its high potential for real-world deployment in AI-driven computer-aided diagnosis (CAD) systems, particularly in hospitals and telemedicine applications.

نویسندگان

Leila Yousofvand

Department of Computer Engineering, Lorestan University, Khorramabad, ۶۸۱۳۵-۱۹۱۱, Lorestan, Iran

Mohammad Bagher Dowlatshahi

Associate Professor, Computer Engineering, Lorestan University

Mostafa Pirdadeh Beiranvand

Department of Computer Engineering, Lorestan University, Khorramabad, ۶۸۱۳۵-۱۹۱۱, Lorestan, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • A. Agnihotri, N. Kohli, Challenges, opportunities, and advances related to ...
  • Unsupervised feature selection: A fuzzy multi-criteria decision-making approach [مقاله ژورنالی]
  • https://doi.org/۱۰.۱۱۱۱/j.۱۴۶۹-۱۸۰۹.۱۹۳۶.tb۰۲۱۳۷.x[۸] R. Fusco, R. Grassi, V. Granata, S. V. Setola, ...
  • ۲۰۲۰.۱۰۶۳۶۵[۱۲] A. Hashemi, M. B. Dowlatshahi, H. Nezamabadi-Pour, Ensemble of ...
  • Turano, C. Tebala, Z. Hussain, Z. Sheikh, A. Sheikh, G. ...
  • H. Liu, H. Motoda, Feature selection for knowledge discovery and ...
  • A. Nandal, M. Blagojevic, D. Milosevic, A. Dhaka, L. N. ...
  • doi.org/۱۰.۳۲۳۳/JIFS-۲۱۰۲۲۲[۳۱] A. Narin, C. Kaya, Z. Pamuk, Automatic detection of ...
  • org/۱۰.۱۰۰۷/s۱۰۰۴۴-۰۲۱-۰۰۹۸۴-y[۳۲] J. Ning, Neural network-based pattern recognition in the framework ...
  • S. Opricovic, Multicriteria optimization of civil engineering systems, PhD Thesis, ...
  • T. Ozturk, M. Talo, E. A. Yildirim, U. B. Baloglu, ...
  • https://doi.org/۱۰.۱۰۱۶/j.compbiomed.۲۰۲۰.۱۰۳۷۹۲[۳۵] T. Rahman, M. E. H. Chowdhury, A. Khandakar, K. ...
  • H. Zeng, Y. M. Cheung, Feature selection and kernel learning ...
  • نمایش کامل مراجع