Optimizing clinical decisions in reproductive medicine with a hybrid AI predictive model

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 29

فایل این مقاله در 20 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_BDCV-5-4_002

تاریخ نمایه سازی: 14 دی 1404

چکیده مقاله:

Infertility affects approximately ۱ in ۶ individuals globally, and while In Vitro Fertilization (IVF) is the most widely used Assisted Reproductive Technologies (ART), its success rate remains around ۳۰%. Accurate prediction of IVF outcomes is therefore critical for personalizing treatment and improving success rates. This study proposes a novel hybrid AI model that integrates deep learning Convolutional Neural Networks (CNNs) and Gated Recurrent Units (GRUs) with traditional machine learning K-Nearest Neighbors (KNN) and Multi-Layer Perceptron (MLP), optimized by LightGBM, to predict clinical pregnancy following IVF. Evaluated on a dataset including ۵۰۰ medical records of couples undergoing IVF treatment at Infertility Centers, the model achieved ۹۴.۶۷% accuracy and outperformed all baseline models across key metrics, including precision (۹۴.۱۲%), recall (۹۲.۱۲%), F۱-score (۹۲.۳۴%), and AUC-ROC (۰.۹۶). Key predictive features included female age, Anti-Müllerian Hormone (AMH) levels, and embryo quality, aligning with established clinical knowledge. These results demonstrate the hybrid model’s potential to serve as a robust, data-driven decision support tool for fertility specialists, enabling more accurate outcome prediction and personalized patient counseling. Future work will focus on external validation and transitioning to live birth prediction.

نویسندگان

Hossein Sadr

Department of Artificial Intelligence in Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.

Ziba Zahiri

Department of Obstetrics & Gynecology, School of Medicine, Al-Zahra Hospital, Guilan University of Medical Sciences, Rasht, Iran.

Mojdeh Nazari

Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Mohammad Bahadori

School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.

Mohammad Ashoobi

Department of Surgery, School of Medicine, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran.

Ahmad Hoseini

Mehr Infertility Research Institute, Guilan, Rasht, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :