An extended mathematical model for solving z-number linear programing problems using additive weighting method based on best-worst method

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 29

فایل این مقاله در 27 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JFEA-6-4_007

تاریخ نمایه سازی: 7 دی 1404

چکیده مقاله:

This study addresses the challenge of uncertainty in decision-making by employing Z-numbers, which provide a more effective representation of human knowledge than traditional fuzzy numbers. A novel approach is proposed by integrating Z-numbers into Multi-Objective Linear Programming (MOLP), utilizing the Best-Worst Method (BWM) and additive weighting techniques. Specifically, a Z-number Linear Programming (ZLP) framework is introduced. This framework represents the parameters as Z-numbers, while the decision variables are modeled as fuzzy numbers. First, the ZLP problem is converted into an MOLP form, followed by applying the additive weighting method based on BWM to obtain the optimal solution. Therefore, this study extends a novel approach using Z-number to solve MOLP based on BWM and additive weighting methods. This research contributes to decision-making by providing a robust tool for analyzing uncertain information. The feasibility and effectiveness of our proposed method are demonstrated through a real-world case study and compared with the approach proposed by Akram et al. [۲۹]. The results show the proposed method outperforms the fuzzy numbers method. Overall, comparing the results of the proposed method with those of the conventional fuzzy numbers showed that Z-numbers optimized the objective function better than fuzzy numbers.

نویسندگان

Elnaz Osgooei

Departmant of Science, Faculty of Science, Urmia University of Technology, Urmia ۵۷۱۶۶, Iran.

Saeid Jafarzadeh Ghoushchi

Departmant of Industrial Engineering, Faculty of Industrial Engineering, Urmia University of Technology, Urmia ۵۷۱۶۶, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :