Machine Learning Models for Analyzing Nerve Conduction Velocity
محل انتشار: مجله فیزیک پزشکی ایران، دوره: 22، شماره: 5
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 15
فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJMP-22-5_007
تاریخ نمایه سازی: 7 دی 1404
چکیده مقاله:
Introduction: The objective of this study was to utilize Machine Learning (ML) techniques to assess the conduction of nerves located in the upper extremities, specifically the median, ulnar, and radial nerves. The study aimed to establish normal values for nerve conduction (NC) and evaluate the influence of variables such as gender, age, weight, and height on NC. Material and Methods: Electrodiagnostic tests were employed to assess the conduction of both motor and sensory nerves. ML techniques were applied to analyze the data and predict NC values. The study considered historical background and thorough medical assessments to ensure the absence of any NC agents or underlying medical conditions. Results: The investigation successfully established normal values for NC. The ML models demonstrated favorable performance in predicting NC values, considering the influence of variables such as gender, age, weight, and height. Conclusion: The study successfully established normal values for nerve conduction in the upper extremities and demonstrated the effectiveness of ML models in predicting NC values. These findings highlight the potential of ML techniques in enhancing the assessment and understanding of nerve conduction, considering various influencing factors. However, this study has limitations, including its single-center design and a relatively small female cohort, which may affect the generalizability of the results.
کلیدواژه ها:
نویسندگان
Hossein Sadeghi
Department of Physics, Faculty of Sciences, Arak University, Arak ۳۸۱۵۶-۸-۸۳۴۹, Iran
Fatemeh Saeif
Department of Radiotherapy and Medical Physics, Arak University of Medical Sciences and Khonsari Hospital, Arak, Iran
Soraya Khanmohammadi
Industrial and Systems Engineering, Tarbiat Modares University, Tehran ۴۱۱۷-۱۳۱۱۴, Iran
Sima Khanmohammadi
Department of Physics, Faculty of Sciences, Arak University, Arak ۳۸۱۵۶-۸-۸۳۴۹, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :