Integrating Self-Regulated Learning in Flipped Learning to Enhance Argumentative Writing with Digital Tools
سال انتشار: 1405
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 33
فایل این مقاله در 25 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JMRELS-13-1_007
تاریخ نمایه سازی: 7 دی 1404
چکیده مقاله:
This quasi-experimental study investigated the integration of Flipped Learning (FL) with Self-Regulated Learning (SRL) strategies to enhance argumentative writing (AW) skills among ۲۴۰ intermediate English-proficient medical students at an Iranian university during Fall ۲۰۲۳. The study aimed to determine whether embedding SRL strategies into FL environments would lead to greater improvements in AW proficiency compared to FL alone. Participants were randomly assigned to an experimental group (FL with SRL) or a control group (FL without SRL). In the experimental group, digital tools such as Google Docs, EdPuzzle, and Padlet were aligned with SRL phases to facilitate goal-setting, pre-class preparation, and reflective critique. Results indicated that while both groups improved, students who engaged with SRL-enhanced FL instruction demonstrated greater gains in AW and self-regulatory skills. These findings suggest that integrating SRL strategies into FL models can foster more effective writing development and learner autonomy in English for Specific Purposes (ESP) contexts, offering a scalable instructional approach for medical education. The instructional design and digital tool alignment proposed in this study can be adapted to support writing development and learner autonomy across various global ESP programs and diverse educational contexts.
کلیدواژه ها:
نویسندگان
Leyli Nouraei Yeganeh
Department of Foreign Languages and Literature, University of Tehran; Tehran, Iran
Majid Nemati
Department of Foreign Languages and Literature, University of Tehran; Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :