On overcoming Dahlquist’s second barrier forA-stable linear multistep methods

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 64

فایل این مقاله در 19 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJNAO-15-35_012

تاریخ نمایه سازی: 22 آذر 1404

چکیده مقاله:

Dahlquist’s second barrier limits the order of A-stable linear multistep methods to at most two, posing significant challenges for achieving higher accuracy in the numerical solution of stiff ordinary differential equations. Leveraging various successful techniques, many efforts have been made to develop efficient methods that overcome this fundamental obstacle through different approaches. In this paper, we survey these techniques and analyze their impact on enhancing the stability and accuracy of the resulting methods. A comprehensive understanding of these advances can assist researchers in designing more effective algorithms for stiff problems.

نویسندگان

G. Hojjati

Faculty of Mathematics, Statistics and Computer Science, University of Tabriz, Tabriz, Iran.

S. Fazeli

Marand Technical College, University of Tabriz, Tabriz, Iran.

A. Moradi

Institute of Analysis and Numerics, Otto von Guericke University Magdeburg, Universitätsplatz ۲, ۳۹۱۰۶ Magdeburg, Germany.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Abdi, A. and Hojjati, G. An extension of general linear ...
  • Butcher, J.C., and Hojjati, G. Second derivative methods with RK ...
  • Butcher, J.C. Numerical methods for ordinary differential equations, Wiley, Chichester, ...
  • Cash, J.R. On the integration of stiff systems of ODEs ...
  • Cash, J.R. Second derivative extended backward differentiation formulas for the ...
  • Cash, J.R. The integration of stiff initial value problems in ...
  • Cong, N.H. and Thuy, N.T. Stability of Two-Step-by-Two-Step IRK Methods ...
  • Curtiss, C.F. and Hirschfelder, J.O. Integration of stiff equations, Proceedings ...
  • Dahlquist, G. A special stability problem for linear multistep methods, ...
  • Enright, W.H. Second derivative multistep methods for stiff ordinary differential ...
  • Fazeli, S., Hojjati, G., and Shahmorad, S. Super implicit multistep ...
  • Fredebeul, C. A-BDF: A generalization of the backward differentiation formulae, ...
  • Gear, C.W. Numerical Initial Value Problems in Ordinary Differential Equations, ...
  • Hairer, E. and Wanner, G. Solving ordinary differential equations II: ...
  • Hojjati, G. A class of parallel methods with superfuture points ...
  • Hojjati, G., Rahimi Ardabili, M.Y., and Hosseini, S.M. A-EBDF: an ...
  • Hojjati, G., Rahimi Ardabili, M.Y. and Hosseini, S.M. New second ...
  • Hojjati, G. and Taheri Koltape, L. On the stability functions ...
  • Hindmarsh, A.C. ODEPACK, a systematized collection of ODE solvers, Scientific ...
  • Iserles, A. A first course in the numerical analysis of ...
  • Jackiewicz, Z. General Linear Methods for Ordinary Differential Equations, Wiley, ...
  • Psihoyios, G. Advanced step-point methods for the solution of initial ...
  • Psihoyios, G. A general formula for the stability functions of ...
  • Shampine, L.F. and Reichelt, M.W. The MATLAB ODE suite, SIAM ...
  • Skeel, R.D., Kong, A.K. Blended linear multistep methods, ACM TOMS ...
  • نمایش کامل مراجع