Hybrid Enhancement of Heat Exchanger Efficiency via Geometric Modifications and Nanofluid-Induced Thermal Property Improvement
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 77
فایل این مقاله در 17 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJCCE-44-12_013
تاریخ نمایه سازی: 10 آذر 1404
چکیده مقاله:
This study numerically investigates the combined heat transfer and fluid flow behavior in a double-pipe heat exchanger enhanced with spring-shaped turbulators and Al₂O₃ nanofluids. Four configurations are analyzed: circular turbulators (Case A), elliptical turbulators (Case B), circular turbulators with nanofluids (Case C), and elliptical turbulators with nanofluids (Case D), all compared against a smooth-pipe baseline. A validated ۳D CFD (Computational Fluid Dynamics) model implementing the realizable k-ε turbulence model (y+ ≈ ۱) and second-order discretization evaluates key parameters, Nusselt number, friction factor, and thermal performance across Reynolds numbers (۳,۰۰۰ ≤ Re ≤ ۲۰,۰۰۰). Results demonstrate that elliptical turbulators (Case B) outperform circular designs by ۱۲–۴۵% in heat transfer enhancement, with peak improvements (۴۸.۷%) at Re = ۳,۰۰۰, attributed to stronger secondary flows. Nanofluid addition further augments performance, particularly in laminar-transitional regimes, with Case D achieving the highest thermal efficiency. However, enhancements diminish at higher Re (>۱۳,۱۰۰) as natural turbulence dominates. Pressure drops, penalties increase by up to ۲۱۱.۴۶ Pa (Case D at Re = ۲۰,۰۰۰), highlighting a critical trade-off between heat transfer and hydraulic losses. ۳D thermal contours reveal that elliptical turbulators create ۲۵–۳۰% larger high-efficiency zones, while nanofluids reduce radial temperature gradients by ۳۵–۴۰%. Streamline analysis shows negligible global flow differences, confirming that improvements stem from localized near-wall effects. Exergy analysis indicates ۲۴% higher irreversibility for Case D at low Re, emphasizing thermodynamic trade-offs. For industrial applications, Case D is recommended for low-flow systems (Re < ۶,۲۰۰), while simpler designs suffice at higher Re. This work provides actionable insights for optimizing heat exchanger performance through combined geometric and nanofluid enhancements, validated by rigorous numerical and experimental benchmarks.
کلیدواژه ها:
نویسندگان
Hudhaifa Taha Ali
Renewable Energy Research Center- Kirkuk, Northern Technical University, Kirkuk, IRAQ
Sajad Rezazadeh
Department of Mechanical Engineering, Urmia University of Technology, Urmia, I.R. IRAN
Adnan Mohammed Hussein
Renewable Energy Research Center- Kirkuk, Northern Technical University, Kirkuk, IRAQ
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :