Using Machine Learning to Determine Aflatoxin Level in Rice Based on Ambient Temperature and Relative Humidity
محل انتشار: کنفرانس بین المللی هوش مصنوعی و فناوری های مرتبط
سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 9
فایل این مقاله در 5 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICIRT01_019
تاریخ نمایه سازی: 9 آذر 1404
چکیده مقاله:
In the quality control of imported cereals, one of the critical parameters is the level of rice contamination with aflatoxins, which is measured by high-performance liquid chromatography with an immunoaffinity column. In the present study, it is investigated the effect of temperature and relative humidity of the rice storage location on its aflatoxin level. For this purpose, aflatoxin analysis results were collected period of one year. The mean temperature and relative humidity of the storage location were recorded. The effect of ambient temperature and relative humidity on the level of aflatoxin B۱ and B۲ in rice was determined through mathematical modeling using a supervised machine learning method based on gradient descent. Based on mathematical equations fitted to the results of aflatoxin measurements in ۴۴۴ rice samples, a temperature of ۲۵ to ۳۵ °C and a relative humidity of ۵۰ to ۶۰ % are recommended to reduce aflatoxin when storing imported rice in warehouses.
کلیدواژه ها:
نویسندگان
Zahra Yavari
Department of Chemistry, Faculty of Sciences, University of Sistan and Baluchestan, Zahedan ۹۸۱۳۵-۶۷۴, Iran
Jalil Etminan
Department of Electrical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
Hossein Sanoori
Department of Chemistry, Faculty of Sciences, University of Sistan and Baluchestan, Zahedan ۹۸۱۳۵-۶۷۴, Iran