Transformer-Based Multimodal Fusion for Alzheimer’s Disease: A Systematic Review of Neuroimaging-Genomics Integration
محل انتشار: InfoScience Trends، دوره: 2، شماره: 8
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 88
فایل این مقاله در 20 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_ISJTREND-2-8_003
تاریخ نمایه سازی: 9 آذر 1404
چکیده مقاله:
Early detection of Alzheimer’s disease (AD) requires integrating neuroimaging and genomic data, yet multimodal fusion remains methodologically challenging. Transformer models, particularly those employing cross-attention, offer a promising approach to model inter-modal dependencies for improved prediction and interpretability. This PRISMA ۲۰۲۰-compliant systematic review synthesized studies (۲۰۱۹–۲۰۲۵) on transformer-based fusion of neuroimaging (sMRI/PET) and genomics (SNPs/pathways) for AD. Ten studies met inclusion criteria after screening ۱,۴۴۴ records. Data were extracted on architectures, evaluation targets, genomic modeling, interpretability, and confounding control. Risk of bias was assessed using PROBAST-AI. Four studies implemented explicit cross-attention, with symmetric designs (e.g., cross-transformers) showing bidirectional genotype-phenotype insights, while asymmetric frameworks prioritized directional interactions. Diagnostic accuracy reached ۹۶.۸۸% for CN/MCI/AD classification, but early-detection endpoints (e.g., MCI conversion) were underrepresented. Genomic tokenization was often shallow (e.g., APOE-centric SNPs), and ancestry confounding was rarely addressed. Interpretability relied on attention maps or SHAP but lacked validation (e.g., LD-aware enrichment). Only one study combined cross-attention with progression prediction, and external validation was absent. Transformer-based fusion advances AD research but faces gaps in generalizability, genomic depth, and clinical translation. Future work should integrate LD-aware tokenization, survival analysis, and multi-cohort validation to bridge these gaps.
کلیدواژه ها:
نویسندگان
Samira Parvizi Omran
School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
Mohammad Amin Raji
School of Medicine, Babol University of Medical Sciences, Babol, Iran.
Faezeh Sharifi
School of Medicine, Azad University of Medical Sciences, Sari Branch, Sari, Iran.
Zaman Malek
Department of Radiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :