Advanced ADHD Detection Using Multivariate Variational Mode Decomposition and Deep Learning: A Novel EEG-Based Framework

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 19

فایل این مقاله در 15 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_ISJTREND-2-6_003

تاریخ نمایه سازی: 9 آذر 1404

چکیده مقاله:

This study proposes a novel framework for detecting Attention Deficit Hyperactivity Disorder (ADHD) using electroencephalography (EEG) signals, integrating multivariate variational mode decomposition (MVMD) with machine learning techniques. EEG data, reflecting complex neural dynamics, were analyzed to identify ADHD-specific patterns. MVMD was employed to decompose multi-channel EEG signals from selected channels (C۳, C۴, P۳, P۴, T۵, T۶, O۱, O۲) into synchronized intrinsic mode functions, capturing inter-channel dependencies. The minimum redundancy maximum relevance (mRMR) algorithm selected non-redundant, discriminative features, enhancing model interpretability. Features were used to train Support Vector Machine (SVM) and Long Short-Term Memory (LSTM) classifiers. Evaluated on a publicly available dataset, the MVMD-LSTM model achieved ۹۵.۴% accuracy, ۹۴.۸% precision, and ۹۵.۱% recall on a holdout test set, outperforming standalone SVM (۷۳.۴% accuracy) and LSTM (۸۱.۶% accuracy). Compared to traditional univariate decomposition methods, MVMD improved classification by preserving cross-channel neural dynamics. Sensitivity analyses validated the robustness of channel and parameter selections. The selected features, including theta and beta power differences, aligned with known ADHD biomarkers. This framework sets a new benchmark for EEG-based ADHD detection, offering poten-tial for objective, neurophysiologically grounded diagnostics. Future work should validate the approach on diverse cohorts, incorporate resting-state EEG, and explore real-time clinical applications to enhance translational impact, paving the way for reliable diagnostic tools for ADHD and other neuropsychiatric disorders.

کلیدواژه ها:

ADHD Detection ، Electroencephalography (EEG) ، Multivariate Variational Mode Decomposition (MVMD) ، Machine Learning ، Long Short-Term Memory (LSTM)

نویسندگان

Parastou Shahmohamadi

Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Shiva Amini

Behavioral Disorders and Substance Abuse Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.

Shiva Khanbabaee

Department of Psychiatry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.

Negin Tavakoli

Department of Psychiatry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.

Sedigheh Molaei

Neurosciences Research Center, Qom University of Medical Sciences, Qom, Iran.

Niloofar Teimoori

Family Physician at the Health Network, Deputy of Health, Jiroft University of Medical Sciences, Jiroft, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Voeller KK. Attention-deficit hyperactivity disorder (ADHD). Journal of child Neurology. ...
  • Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. ۱۹۹۷;۹(۸):۱۷۳۵-۸۰. ...
  • نمایش کامل مراجع