Scoping Review of Artificial Intelligence Applications in Global Burden of Disease Studies: Current Practices, Conceptual Models, and Ethical Challenges

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 39

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_ISJTREND-2-3_002

تاریخ نمایه سازی: 4 آذر 1404

چکیده مقاله:

The integration of artificial intelligence (AI) into Global Burden of Disease (GBD) studies presents transformative opportunities to enhance data collection, analysis, and dissemination. This scoping review synthesizes current applications, conceptual models, and ethical challenges of AI in GBD workflows, guided by PRISMA-ScR methodology. Findings from nine key studies reveal AI's role in automating data integration from diverse sources—such as unstructured text, geospatial datasets, and electronic health records—using techniques like natural language processing (NLP) and multimodal deep learning. AI also advances predictive modeling, risk factor estimation, and real-time disease forecasting, improving the granularity and scalability of burden metrics. In dissemination, AI-powered tools like ChatGPT and interactive dashboards facilitate personalized and accessible reporting for stakeholders. However, challenges persist, including data disparities, algorithmic bias, and ethical concerns, particularly in low-resource settings. The review highlights the need for operational validation, standardized protocols, and equitable AI deployment to ensure these technologies enhance global health equity. Future research should prioritize real-world implementations, bias mitigation, and interdisciplinary collaboration to fully harness AI's potential in GBD studies.

کلیدواژه ها:

نویسندگان

Masoumeh Asgharpour

Department of Nephrology, Rouhani Hospital of Medical Sciences, Babol, Iran.

Majid Khlilizad Darounkolaei

Department of Orthopedics, Clinical Research Center of Shahid Beheshti Hospital, Babol, Iran.

Seyedamirmohammad Mazloumi

Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.

Farima Alinia

Research Committee, Babol University of Medical Sciences, Babol, Iran.

Nima Habibi

Research Committee, Babol University of Medical Sciences, Babol, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :