Machine Learning Approaches for Automated User Interface Component Recognition: A Comprehensive Review
سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 17
فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICPCONF11_192
تاریخ نمایه سازی: 1 آذر 1404
چکیده مقاله:
This paper explores the role of machine learning algorithms in the automated recognition of graphical user interface (GUI) components to enhance UI/UX testing processes. By reviewing methods based on computer vision and deep learning, including Convolutional Neural Networks (CNNs) and YOLO models, it is demonstrated that these techniques offer higher accuracy and speed compared to traditional approaches. Challenges such as platform fragmentation, dynamic elements, and computational resource limitations are discussed, with proposed solutions including hybrid approaches and AI-based testing. The findings confirm the positive impact of machine learning on improving the quality and efficiency of UI testing.
کلیدواژه ها:
نویسندگان
Sanaz Bahrami
B.Sc. Student, Computer Engineering, Toos Institute of Higher Education
Taktom Dehghani
Assistant Professor, Medical Informatics, Mashhad University of Medical Sciences