Machine Learning Approaches for Automated User Interface Component Recognition: A Comprehensive Review

سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 17

فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICPCONF11_192

تاریخ نمایه سازی: 1 آذر 1404

چکیده مقاله:

This paper explores the role of machine learning algorithms in the automated recognition of graphical user interface (GUI) components to enhance UI/UX testing processes. By reviewing methods based on computer vision and deep learning, including Convolutional Neural Networks (CNNs) and YOLO models, it is demonstrated that these techniques offer higher accuracy and speed compared to traditional approaches. Challenges such as platform fragmentation, dynamic elements, and computational resource limitations are discussed, with proposed solutions including hybrid approaches and AI-based testing. The findings confirm the positive impact of machine learning on improving the quality and efficiency of UI testing.

کلیدواژه ها:

Machine Learning ، UI Testing ، Computer Vision ، YOLO Model ، Convolutional Neural Networks (CNNs)

نویسندگان

Sanaz Bahrami

B.Sc. Student, Computer Engineering, Toos Institute of Higher Education

Taktom Dehghani

Assistant Professor, Medical Informatics, Mashhad University of Medical Sciences