Prediction of groundwater quality parameters in Golestan province using response surface method, decision tree and neural network

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 31

فایل این مقاله در 19 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_NAWEE-4-2_003

تاریخ نمایه سازی: 10 آبان 1404

چکیده مقاله:

Groundwater quality is a main issue in most of the plains in Iran. Therefore, quality management and monitoring of water resources is of great importance. In this study, water quality parameters including sodium adsorption ratio (SAR), total soluble solids ratio (TDS) and electrical conductivity (EC) were predicted using artificial neural network (MLP), decision tree model (M۵Tree), and response surface method (RSM). The quality data acquired from ۹۶ observation wells located in Golestan province were used for model inputs are sodium, water pH, chloride, sulfate, calcium and magnesium. Models were evaluated utilizing three criteria of root mean square error (RMSE), detemination coefficient (R۲) and mean absolute error (MAE) were used. Three different input combinations were considered to predict EC, SAR and TDS. The results of this study showed that the parameters Na and Cl have the greatest effect on the accuracy of the models. According to the results, the decision tree model (M۵Tree) was found to have the highest accuracy in predicting EC followed by the RSM and ANN models. However, the RSM model has a higher efficiency than the other models in predicting the SAR and TDS. According to the obtained results, it can be said that the RSM in general predicts the groundwater quality parameters with relatively better accuracy.

نویسندگان

omolbani Mohammadrezapour

Department of water engineering, Faculty of water and soil, Gorgan University of Agricultural Resources and Natural Resourses, Gorgan, Iran.

Behrooz keshtegar

Department of civil, Faculty of Engineering, University of Zabol, Zabol, Iran.

ozgur Kisi

Department of Civil Engineering, Technical University of Lübeck, Lübeck, Germany

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Adimalla, N., Ravi Manne, Y. Z., Panpan, X., Hui, Q. ...
  • Guler, C., Kurt, M., Alpasalan, M., Akbulut, C. ۲۰۱۲. Assessment ...
  • Haykin, S. ۱۹۹۹. Neural networks: A comprehensive foundation. Prentice-Hall, Upper ...
  • Jalalkamali, A., Jalalkamali, N. ۲۰۱۸. Adaptive network-based fuzzy inference system-genetic ...
  • Heshmatpour, A., & Sajadi, S. J. ۲۰۲۴. A survey on ...
  • Kisi, O., Azad, A., Kashi, H., Saeedian, A., Hashemi, S. ...
  • Kumru, M. N., Bakac, M. K. ۲۰۰۳. R-mode factor analyses ...
  • Marashi, S. E., Solaimani, K., Habibnejad, M., Jahanshahi, A. ۲۰۲۳. ...
  • Mohammadrezapour, O., Kisi, O., Purahmadi, F. ۲۰۱۸. Fuzzy c-means and ...
  • Montgomery, D. C. ۲۰۰۱. Design and analysis of experiments. John ...
  • Najah, A., Elshafie, A., Karim, O. A., Jaffar, O. ۲۰۰۹. ...
  • Pourjabbar, A., Sarbu, C., Kostarelos, K., Einax, J., Buchel, G. ...
  • Rizzo, D. M., Mouser, J. M. ۲۰۰۰. Evaluation of geostatistics ...
  • Sattari, M. T., Pal, M., Apaydin, H. ۲۰۱۳. M۵ Model ...
  • Sivasankar, V., Kameswari, M., Msagati, T. A. M., Venkatarapathy, M., ...
  • Thompson, D. ۱۹۸۲. Response surface experimentation. Journal of Food Processing ...
  • Vafakhah, M. ۲۰۱۲. Application of artificial neural networks and adaptive ...
  • Yesilnacar, M. I., Sahinkaya, E., Naz, M., Ozkaya, B. ۲۰۰۸. ...
  • Solgi, E., Beigmohammadi, F., Ahmadvand, R., Baser, S. ۲۰۲۵. Nitrate ...
  • نمایش کامل مراجع