Lithium extraction assessment from brines in Kerman province: challenges and opportunities for clean energy transition and climate change mitigation

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 156

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJMGE-59-3_001

تاریخ نمایه سازی: 3 آبان 1404

چکیده مقاله:

The global transition toward clean and sustainable energy systems has elevated lithium to a position of critical importance due to its exceptional electrochemical properties, low density, and lightweight characteristics. Lithium’s role in enabling the widespread adoption of electric vehicles (EVs) and portable electronics, coupled with the urgency of addressing climate change, underscores the need for efficient and sustainable resource exploration. This study focuses on assessing the potential for lithium extraction from brine sources in Kerman Province, Iran, with particular emphasis on the Shahrebabak region. Unlike previous studies that primarily focused on well-established lithium resources globally, this research explores an under investigated region in Iran, providing a new understanding of its lithium-bearing potential and associated challenges. By integrating advanced remote sensing techniques with field-based geochemical analyses, this study pioneers a comprehensive methodology that has not been applied to Iran's brine sources before. To identify lithium-rich zones, advanced remote sensing methods, including Landsat ۸ and Sentinel-۲ imagery, were employed alongside geochemical analysis conducted via Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Fifteen brine samples were collected at depths ranging from ۰.۵ to ۲ meters, with lithium concentrations measured between ۹۴ and ۱۰۵ ppm. The Mg/Li ratios in these samples varied between ۱.۲ and ۳.۸, indicating potential challenges in achieving cost-effective extraction. Spectral Angle Mapper (SAM) analysis highlighted promising lithium-bearing zones, which were further validated through field sampling. The geochemical analysis of brine revealed that magnesium, potassium, sodium, and calcium are the dominant elements in the region, with lithium and boron present in trace amounts. Despite the presence of lithium, its relatively low concentration and high Mg/Li ratios suggest that the economic feasibility of large-scale lithium extraction in Shahrebabak remains limited. However, the study confirms the potential for lithium occurrence in Iran’s brine resources and highlights the need for further research into alternative extraction methods and the evaluation of other regions with more favorable geochemical conditions. This study contributes to the global discourse on clean energy and climate change mitigation by providing a foundational framework for lithium resource exploration in Iran. It aligns with the sustainable development goals by promoting environmentally compatible resource utilization, reducing greenhouse gas emissions, and fostering economic growth through the development of strategic clean energy resources. Further multidisciplinary research efforts are essential to fully realize Iran’s lithium potential and support the global transition to a greener energy future.

نویسندگان

Hamid Sarkheil

School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran.

Mostafa Shahbaznejad

College of Environment, Department of Environment(DOE), Tehran, Iran.

Behzad Rayegani

Research Group of Environmental Assessment and Risks, Research Center of Environment and Sustainable Development (RCESD), Department of Environment, Tehran, Iran.

Yasaman Mohtat

School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran.

Taha Salahjou

School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran.

Ali Sadeghy Nejad

School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Sims, R.E., ۲۰۰۴. Renewable energy: a response to climate change. ...
  • Panwar, N.L., Kaushik, S.C. and Kothari, S., ۲۰۱۱. Role of ...
  • Scrosati, B. and Garche, J., ۲۰۱۰. Lithium batteries: Status, prospects ...
  • Gaines, L., Nelson P. (۲۰۰۹) Lithium ion batteries: possible materials ...
  • Wanger, T.C., ۲۰۱۱. The Lithium future—resources, recycling, and the environment. ...
  • Vikström, H., Davidsson, S. and Höök, M., ۲۰۱۳. Lithium availability ...
  • Nygren, E., Aleklett, K. and Höök, M., ۲۰۰۹. Aviation fuel ...
  • IEA. World Energy Outlook ۲۰۰۸. <http://www.iea.org> ...
  • Hoegh-Guldberg, O. and Bruno, J.F., ۲۰۱۰. The impact of climate ...
  • Walther, G.R., Post, E., Convey, P., Menzel, A., Parmesan, C., ...
  • Munk, L.A., Hynek, S.A., Bradley, D., Boutt, D., Labay, K. ...
  • Schulz, K.J., DeYoung, J.H., Seal, R.R. and Bradley, D.C. eds., ...
  • Garrett, D. ۲۰۰۴. Handbook of lithium and natural calcium chloride: ...
  • Gruber, P.W., Medina, P.A., Keoleian, G.A., Kesler, S.E., Everson, M.P. ...
  • Abrams, M., ۲۰۰۰. The Advanced Spaceborne Thermal Emission and Reflection ...
  • Jensen, J.R., ۲۰۱۵. Introductory Digital Image Processing: A Remote Sensing ...
  • Rajesh, H.M., ۲۰۰۴. Application of remote sensing and GIS in ...
  • Speirs, J., Contestabile, M., Houari, Y. and Gross, R., ۲۰۱۴. ...
  • Blomgren, G.E., ۲۰۱۷. The development and future of lithium ion ...
  • Curry, C., ۲۰۱۷. Lithium-ion battery costs and market. Bloomberg New ...
  • USGS. Lithium – mineral commodity summary ۲۰۱۹; ۲۰۱۹ <http:// minerals.usgs.gov/minerals/pubs/commodity/lithium/> ...
  • Brown, T.J., Idoine, N.E., Raycraft, E.R., Shaw, R.A., Hobbs, S.F., ...
  • Bradley, D., Stillings, L., Jaskula, B., Munk, L., & McCauley, ...
  • Ettehadi, A., Chuprin, M., Mokhtari, M., Gang, D., Wortman, P., ...
  • Krishnan, R., & Gopan, G. (۲۰۲۴). A comprehensive review of ...
  • Warren, J.K., ۲۰۰۶. Evaporites: sediments, resources and hydrocarbons. Springer Science ...
  • Chagnes, A. and Swiatowska, J. eds., ۲۰۱۵. Lithium process chemistry: ...
  • Xiao, G., Tong, K., Zhou, L., Xiao, J., Sun, S., ...
  • Bradley, D., Munk, L., Jochens, H., Hynek, S. and Labay, ...
  • Davari, N., Lak, R., & Rozeh Kar, S. (۲۰۱۷). Monitoring ...
  • Soleimani Khalaji, M. (۲۰۱۶). Lithium extraction from Urmia Lake brine ...
  • Moazeni, M., Hajipour, H., Askari, M. and Nusheh, M., ۲۰۱۵. ...
  • Chitrakar, R., Kanoh, H., Miyai, Y. and Ooi, K., ۲۰۰۱. ...
  • Nishihama, S., Onishi, K. and Yoshizuka, K., ۲۰۱۱. Selective recovery ...
  • Umeno, A., Miyai, Y., Takagi, N., Chitrakar, R., Sakane, K. ...
  • Fasel, D. and Tran, M.Q., ۲۰۰۵. Availability of lithium in ...
  • Zheng, M. and Liu, X., ۲۰۰۹. Hydrochemistry of salt lakes ...
  • British Geological Survey. (BGS), Minerals UK, Lithium Profile. ۲۰۱۶. Available ...
  • Hasani Pak, A. A. (۲۰۱۲). Mineral sampling (Exploration, extraction, and ...
  • Geochemical exploration guidelines for large-scale stream sediments (۱:۲۵۰۰۰). (۲۰۱۱). Publication ...
  • Rayegani, B., Barati S., Goshtasb H., Gachpaz S., Ramezani J., ...
  • Rayegani, B. Barati, S. Goshtasb, H. Sarkheil H., Ramezani J. ...
  • De Carvalho, O.A. and Meneses, P.R., ۲۰۰۰, February. Spectral correlation ...
  • Girouard, G., Bannari, A., El Harti, A. and Desrochers, A., ...
  • Kuching, S., ۲۰۰۷. The performance of maximum likelihood, spectral angle ...
  • Pournamdari, M., Hashim, M. and Pour, A.B., ۲۰۱۴. Application of ...
  • Rashmi, S., Addamani, S., Ravikiran, A., ۲۰۱۴. Spectral Angle Mapper ...
  • نمایش کامل مراجع