Genetic Algorithm Parameter Optimization for Indigenous Telecommunication Satellite Constellation Design
سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 48
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
AEROSPACE23_191
تاریخ نمایه سازی: 28 مهر 1404
چکیده مقاله:
Satellite constellations represent a rapidly evolving industry globally. This paper highlights the significance of this domain, defines pertinent concepts, and frames the satellite constellation design as an optimization challenge. Subsequently, it explores an optimal solution for a ۱۰-satellite constellation in Low Earth Orbit (LEO). This optimization problem comprises ۳۰ variables, resulting in a high-dimensional optimization scenario. Furthermore, this study employs a Genetic Algorithm (GA) optimizer, which necessitates the tuning of four distinct parameters. A well-defined objective function is introduced, considering not only coverage but also computational efficiency and cost. The research focuses on determining suitable values for the initial population size, aiming to achieve optimal parameter settings for each simulation. The results demonstrate that population size is a critical parameter influencing the performance of the Genetic Algorithm. While increasing the population size leads to higher computational cost, it also results in a significant improvement in the optimization outcome. Across five different scenarios, the investigation shows that an optimal solution is achieved when the population size is approximately ۳.۵ times the number of problem variables. This yields a satellite constellation capable of providing ۱۷ hours of coverage out of a possible ۲۴ hours for the designated target, which in this case is Tehran. Additionally, a sensitivity analysis is conducted to examine the impact of improper parameter selection, revealing risks of premature convergence and reduced solution quality.
کلیدواژه ها:
نویسندگان
Arash Kosari
Assistant professor, Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology (IROST)
Amir Reza Fathi
PhD Student, University of Tehran
Parviz Mohammadzadeh
Associate Professor, University of Tehran