Advancing Biogas Production Forecasting Using Artificial Intelligence: A Comprehensive Review of Models and Applications

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 44

فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_BBR-4-3_003

تاریخ نمایه سازی: 19 مهر 1404

چکیده مقاله:

Artificial intelligence (AI) plays a transformative role in improving the efficiency of biogas production by providing advanced tools for predicting and optimizing anaerobic digestion processes as a sustainable source of organic waste management and renewable energy supply. This study provides a systematic review of the applications of AI in biogas production prediction and, by reviewing recent studies, evaluates statistical, machine learning, and hybrid models and compares the performance of algorithms such as Random Forest and Artificial Neural Networks (ANN). These algorithms have shown outstanding performance in recent studies due to their ability to model nonlinear and dynamic behaviors. However, challenges such as inconsistent data quality, biochemical complexities, and generalizability limitations have limited the full exploitation of these technologies. Through a comprehensive literature review, this study identifies the strengths and weaknesses of existing models and proposes innovative solutions, including the integration of real-time data based on the Internet of Things (IoT), the development of hybrid models, and the utilization of transfer learning. The findings highlight the potential of artificial intelligence in improving the efficiency of biogas systems, reducing operating costs, and supporting sustainable energy planning, and provide directions for the development of intelligent and scalable forecasting tools.

نویسندگان

Soha Sami

Mechanics of Biosystems Engineering Department, College of Aburaihan, University of Tehran, Tehran, Iran.

Jafar Massah

Mechanics of Biosystems Engineering Department, College of Aburaihan, University of Tehran, Tehran, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :