Ultrasound-Responsive Liquid–Liquid Microgels for Targeted Delivery of Bioactive Polysaccharides and Antioxidants in Multi-Stage Thermal Processed Functional Foods

سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 36

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

FSACONF20_057

تاریخ نمایه سازی: 17 مهر 1404

چکیده مقاله:

Thermally processed functional beverages require carrier systems capable of protecting and selectively releasing labile bioactives under industrial multi-step heating regimes while responding to mild, food-safe triggers. In this study, ultrasound-responsive liquid–liquid microgels (US-LLMGs) were engineered via controlled liquid–liquid phase separation (LLPS) between whey protein isolate (WPI) and a polysaccharide matrix composed of β-glucan and sodium alginate, subsequently stabilized with enzymatically oxidized (+)-catechin to form a dense, protein–polyphenol hybrid shell. The formulation parameters (pH, ionic strength, polyphenol concentration) were optimized using a central composite design to maximize encapsulation efficiency (EE), shell integrity, and acoustic responsiveness. The optimal microgels (pH ۶.۴, ۱۵ mM NaCl, ۰.۲۲% w/v polyphenol) exhibited a hydrodynamic diameter of ۲.۵۵ ± ۰.۰۸ µm, polydispersity index ۰.۱۸ ± ۰.۰۲, ζ-potential −۱۹.۲ ± ۰.۶ mV, and β-glucan EE of ۹۳.۴ ± ۰.۹%. Following three sequential heat treatments (HTST pasteurization, warm homogenization, final ۹۰ °C/۲ min holding), EE retention remained at ۹۲.۱ ± ۱.۰%, with antioxidant activity (ORAC, DPPH) preserved above ۹۵%. Low-intensity ultrasound at ۸۰ kHz/۰.۹ W·cm⁻² triggered a rapid release of ۴۸.۷ ± ۲.۲% within ۵ min and ۸۲.۶ ± ۲.۱% within ۱۵ min (p < ۰.۰۰۱ vs. control). Kinetic modelling revealed a predominantly anomalous transport mechanism (n = ۰.۶۳ ± ۰.۰۲, Korsmeyer–Peppas) driven by US-induced shell permeability enhancement via acoustic microstreaming. The integration of LLPS-derived microgel morphology, polyphenol-mediated shell compaction, and frequency-specific acoustic sensitivity yielded a platform combining exceptional thermal resilience with on-demand, site-specific release performance. These findings position US-LLMGs as a scalable, industrially compatible delivery vehicle for hydrophilic bioactives in next-generation functional beverages, enabling post-processing activation without compromising sensory or physicochemical stability.

نویسندگان

Morteza Jamshideini

PhD in Food Technology, Islamic Azad University, North Tehran Branch

Behzad Beizaei

Master of Science in Food Industry, Islamic Azad University, Tehran Science and Research Branch

Sara Jafarirad

PhD in Food Technology, Islamic Azad University, Varamin Branch

Somayeh Rahimi Malekshan

PhD in Food Technology, Islamic Azad University, Varamin Branch