Selection of classifiers and their combiners based on multi-objective optimization in ensemble learning
محل انتشار: همایش مهندسی کامپیوتر و توسعه پایدار با محوریت شبکه های کامپیوتری، مدلسازی و امنیت سیستم ها
سال انتشار: 1392
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,018
فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
CESD01_017
تاریخ نمایه سازی: 25 اسفند 1392
چکیده مقاله:
Ensemble learning is a method that improves the performance of classification problems. According to recent studies, selecting a subset of trained classifiers is better than all of available classifiers. By using these studies and evolutionary multi-objective optimization methods, we propose an ensemble learning approach called Multi-objective Optimization for Selecting and Combining Different Classifiers (MOSCDC) that selects the best classifiers and their combiners based on error and diversity objectives. MOSCDC strongly decreases the generalization error model. For optimization of error and diversity objectives in order to select classifiers and their combiners, we use multi-objective optimization methods based on genetic algorithm. In order to calculate the diversity of classifiers, we use Q-statistic method in our experiments. We compare the results of our experiment with related works on different datasets from UCI Machine Learning Repository and most of the time we obtain better results from the view point of classification accuracy and diversity.
کلیدواژه ها:
نویسندگان
R. Mousavi
Derartment of Electrical and Computer Engineering, Graduate University of High Technology, Kerman, Iran
M. Eftekhari
۲Department of Computer Engineering, Shahid Bahonar University of Kerman, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :