Artificial Intelligence and Digital Menstrual Cycle Trackers: A Systematic Review of Applications, Benefits, and Challenges in Enhancing Women’s Physical and Mental Health

سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 25

متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

WMCONF14_049

تاریخ نمایه سازی: 14 مهر 1404

چکیده مقاله:

AbstractBackground and Objective:Recent advances in Artificial Intelligence (AI) and the proliferation of digital menstrual cycle trackers have created unprecedented opportunities to improve women’s physical and mental health. These tools, by accurately predicting cycles, identifying irregularities, and providing personalized recommendations, can enhance awareness, reduce anxiety related to hormonal fluctuations, and improve overall well-being. This study systematically reviews the applications, benefits, and challenges of AI-powered menstrual cycle trackers in promoting women’s health.Methods:A systematic review was conducted following PRISMA guidelines. PubMed, Scopus, Web of Science, and IEEE Xplore databases were searched for articles published between ۲۰۱۴ and ۲۰۲۵. After screening and applying inclusion criteria, ۳۶ high-quality studies were included.Results:Of these studies, ۲۳ (۶۴%) focused on AI algorithms for cycle prediction and symptom analysis, ۱۸ (۵۰%) addressed psychological impacts, and ۱۴ (۳۹%) examined clinical outcomes such as early detection of reproductive disorders. Common tools included AI-based applications (۲۴ studies), integrated wearable trackers (۱۵ studies), and biosensor-equipped devices (۹ studies). These technologies improved reproductive health awareness, self-management, and anxiety reduction.Conclusion:Integrating AI with menstrual cycle tracking offers promising solutions for women’s health. Future research should focus on enhancing predictive accuracy, standardizing evaluations, ensuring privacy, and developing ethical frameworks.

نویسندگان

Elnaz* Bornasi

۱. Student Committee for Education Development, Lorestan University of Medical Sciences, Khorramabad, Iran. ۲. Master's student in Health Information Technology, Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran.