Optimizing Fault Identification in Power Distribution Systems by the Combination of SVM and Deep Learning Models

سال انتشار: 1405
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 28

فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JOAPE-14-1_005

تاریخ نمایه سازی: 30 شهریور 1404

چکیده مقاله:

Maintaining electrical grid stability and reliability requires the rapid diagnosis and classification of faults in power distribution systems. This study presents a hybrid model that integrates deep learning with support vector machine (SVM) methodologies to classify distribution system faults. In the proposed approach, feature extraction is performed using a convolutional neural network (CNN), and an SVM classifier is employed to identify fault patterns and establish generic fault classifications. The hybrid model is trained and evaluated using an extensive dataset comprising power distribution system fault currents under various fault types and conditions. The integration of deep learning feature extraction with SVM classification enhances fault classification effectiveness. This study aims to contribute to the overall improvement of distribution system reliability, reduction of downtime, and more efficient grid management. To achieve this, PSCAD software is utilized to simulate faults and collect images of three-phase fault current data. Initially, the fault classification problem is addressed using four pre-trained CNN models, with the collected images serving as input data. The hybrid model consists of two distinct components: an SVM block, known for its efficient and precise data classification capabilities, and a CNN block, specifically designed for feature extraction. In the MATLAB environment, a combination of four pre-trained CNN models—AlexNet, SqueezeNet, GoogLeNet, and ResNet-۱۸—are utilized in conjunction with an SVM to create hybrid models. The hybrid SqueezeNet-SVM model has demonstrated exceptional performance, achieving an accuracy rate of ۹۹.۹۵%, a precision rate of ۹۹.۹۸%, a sensitivity rate of ۹۹.۶%, and a specificity rate of ۹۹.۷%.

نویسندگان

Garima Tiwari

Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Haryana, India.

Sanju Saini

Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Haryana, India.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • L. C. Acácio, P. A. Guaracy, T. O. Diniz, D. ...
  • M. Bjelic, B. Brkovi´ c, M. Žarkovi´ c, and T. ...
  • M. Khoshbouy, A. Yazdaninejadi, and T. G. Bolandi, “Transmission line ...
  • J. Zheng, P. Li, K. Xu, X. Kong, C. Wang, ...
  • A. Prasad and J. B. Edward, “Application of wavelet technique ...
  • P. Rajaraman, N. Sundaravaradan, R. Meyur, M. J. B. Reddy, ...
  • G. Vikram Raju and N. Venkata Srikanth, “Mono ann module ...
  • M. O. F. Goni, M. Nahiduzzaman, M. S. Anower, M. ...
  • M. He and D. He, “Deep learning based approach for ...
  • G. Tiwari and S. Saini, “Estimation of location and fault ...
  • A. Saber, A. Emam, and H. Elghazaly, “A backup protection ...
  • G. Tiwari and S. Saini, “Evaluation of transfer learning techniques ...
  • X. Deng, R. Yuan, Z. Xiao, T. Li, and K. ...
  • M. B. Hessine, H. Jouini, and S. Chebbi, “Fault detection ...
  • Y. Liang, K.-J. Li, Z. Ma, and W.-J. Lee, “Multilabel ...
  • P. Chopra and S. K. Yadav, “Pca and feature correlation ...
  • A. A. M. Zin, M. Saini, M. W. Mustafa, A. ...
  • G. Tiwari and S. Saini, “Radial power distribution system fault ...
  • M. Shafiullah and M. A. Abido, “S-transform based ffnn approach ...
  • T. Zheng, Y. Liu, Y. Yan, S. Xiong, T. Lin, ...
  • M. Dehghani, M. H. Khooban, and T. Niknam, “Fast fault ...
  • M. Jamil, R. Singh, and S. K. Sharma, “Fault identification ...
  • J. James, Y. Hou, A. Y. Lam, and V. O. ...
  • Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nat., ...
  • A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification ...
  • C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, ...
  • S. Senemmar and J. Zhang, “Deep learning-based fault detection, classification, ...
  • P. Rai, N. D. Londhe, and R. Raj, “Fault classification ...
  • N. N. Bon et al., “Fault identification, classification, and location ...
  • Y. Xi, W. Zhang, F. Zhou, X. Tang, Z. Li, ...
  • A. Moradzadeh, H. Teimourzadeh, B. Mohammadi-Ivatloo, and K. Pourhossein, “Hybrid ...
  • Y. Ma, D. Oslebo, A. Maqsood, and K. Corzine, “Dc ...
  • Y. Ma, D. Oslebo, A. Maqsood, and K. Corzine, “Pulsedpower ...
  • M. N. I. Siddique, M. Shafiullah, S. Mekhilef, H. Pota, ...
  • J. Zhu, L. Mu, D. Ma, and X. Zhang, “Faulty ...
  • P. Venkata, V. Pandya, and A. Sant, “Data mining and ...
  • O. W. Chuan, N. F. Ab Aziz, Z. M. Yasin, ...
  • J. Li, Z. Weng, H. Xu, Z. Zhang, H. Miao, ...
  • F. Sultana, A. Sufian, and P. Dutta, “Advancements in image ...
  • L. Ali, F. Alnajjar, H. A. Jassmi, M. Gocho, W. ...
  • R. Andonie and A.-C. Florea, “Weighted random search for cnn ...
  • A. Ibrahim, F. Anayi, and M. Packianather, “New transfer learning ...
  • M. Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg, ...
  • K. Sudha and P. Sujatha, “A qualitative analysis of googlenet ...
  • B. Liu, Z.-F. Hao, and X.-W. Yang, “Nesting support vector ...
  • F. N. Iandola, “Squeezenet: Alexnet-level accuracy with ۵۰x fewer parameters ...
  • F. N. Iandola, A. E. Shaw, R. Krishna, and K. ...
  • K. He, X. Zhang, S. Ren, and J. Sun, “Deep ...
  • M. Yin, X. Li, Y. Zhang, and S. Wang, “On ...
  • Q. Wu, T. Gao, Z. Lai, and D. Li, “Hybrid ...
  • F. Islam, K. Prakash, K. A. Mamun, A. Lallu, and ...
  • “The c parameter in support vector machines | baeldung on ...
  • نمایش کامل مراجع