A Estimation of Ridge-Based in a Type-۲ Fuzzy Non-Parametric Regression

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 38

فایل این مقاله در 15 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_GADM-9-1_008

تاریخ نمایه سازی: 29 شهریور 1404

چکیده مقاله:

This paper focuses on estimating ridge in a type-۲ fuzzy non-parametric regression model that utilizes non-fuzzy inputs, type-۲ fuzzy output data, and type-۲ fuzzy coefficients within a dual Lagrange space. It begins with definitions of type-۲ fuzzy sets (T۲FSs) and presents a closed parametric form for complete triangular T۲FSs. The proposed framework underpins a local linear smoothing method that incorporates a cross-validation procedure for optimizing ridge parameters and smoothing values. The research advances statistical modeling with type-۲ fuzzy systems, offering innovative techniques for regression analysis in complex data situations. The combination of ridge estimation, local linear smoothing, and cross-validation is highlighted for its potential to yield precise results. Our work is able to model complex and nonlinear relationships between variables, which more effectively deals with uncertainties and ambiguities in the data, prevents overfitting, and ultimately improves the accuracy and reliability of predictions. Numerical simulations are included to validate the theoretical findings and demonstrate the method's effectiveness.

کلیدواژه ها:

Quasi Type-۲ fuzzy numbers ، Type-۲ fuzzy nonparametric regression ، Type-۲ fuzzy regression ، Ridge estimator ، local linear smoothing

نویسندگان

Javad Ghasemian

School of Mathematics and Computer Science, Damghan University, Damghan, Iran

Mahmoud Moallem

School of Mathematics and Computer Science, Damghan University, Damghan, Iran

Fatemeh Hamidirad

School of Mathematics and Computer Science, Damghan University, Damghan, Iran

Zahra Karimi

School of Mathematics and Computer Science, Damghan University, Damghan, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • A. A. H. A. Ahmadini, novel technique for parameter estimation ...
  • M. G. Akbari, G. Hesamian, A fuzzy linear regression model ...
  • M. Arefi, Quantile fuzzy regression based on fuzzy outputs and ...
  • Z. K. Bahez, H. A. Rasheed, Comparing Some of Robust ...
  • N. S. Bajestani, A. V. Kamyad, E. N. Esfahani, A. ...
  • E. Bas, E. Egrioglu, A fuzzy regression functions approach based ...
  • A. Celmins, Least squares model fitting to fuzzy vector data, ...
  • M. erný, M. Hladík, Possibilistic linear regression with fuzzy data: ...
  • N. Chukhrova, A. Johannssen, Fuzzy regression analysis: systematic review and ...
  • P. Diamond, Fuzzy least squares, Information Sciences, ۴۶(۳), ۱۴۱–۱۵۷, (۱۹۸۸) ...
  • J. Fan, I. Gijbels, Local polynomial modelling and its applications: ...
  • H. Hamrawi, S. Coupland, Type-۲ fuzzy arithmetic using alpha-planes, in: ...
  • H. Hamrawi, Type-۲ fuzzy alpha-cuts, De Montfort University, Ph.D. Thesis, ...
  • H. Hassanpour, H.R. Maleki, M.A. Yaghoobi, A goal programming approach ...
  • Parameter estimation in fuzzy partial univariate linear regression model with non-fuzzy inputs and triangular fuzzy outputs [مقاله ژورنالی]
  • E. Hosseinzadeh, H. Hassanpour, M. Arefi, A weighted goal programming ...
  • A. Kaufmann, M. Gupta, Introduction to Fuzzy Arithmetic Theory and ...
  • G. Klir, B. Yuan, Fuzzy sets and fuzzy logic: theory ...
  • F. Liu, An efficient centroid type-reduction strategy for general type-۲ ...
  • M. Mazandarani, M. Najariyan, Differentiability of type-۲ fuzzy number-valued functions, ...
  • O. Poleshchuk, E. Komarov, A fuzzy linear regression model for ...
  • N. Shafaei Bajestani, A. Vahidian Kamyad, A. Zare, Possibilistic Type-۲ ...
  • N. Shafaei Bajestani, A. Vahidian Kamyad, A. Zare, A Piecewise ...
  • H. Tanaka, S. Uejima, K. Asai, Linear Regression Analysis with ...
  • H. Tanaka, Fuzzy data analysis by possibilistic linear models. Fuzzy ...
  • H. Tanaka, I. Hayashi, J. Watada, Possibilistic linear regression analysis ...
  • D. Topuz, V. Özkaya, B. Çiçek, Bootstrap Resampling Method for ...
  • Y. Wei, J. Watada, Building a type-۲ fuzzy regression model ...
  • M. S. Yang, and C.H. Ko, On a class of ...
  • L. A. Zadeh, Information and control. Fuzzy sets, ۸(۳), ۳۳۸–۳۵۳, ...
  • L. A. Zadeh, The concept of a linguistic variable and ...
  • R. Zarei, M. G. Akbari, J. Chachi, Modeling autoregressive fuzzy ...
  • J. Zhao, T. Zhao Deep interval type-۲ generalized fuzzy hyperbolic ...
  • نمایش کامل مراجع