Prediction of Coefficient of Restitution of Limestone in Rockfall Dynamics Using Adaptive Neuro-Fuzzy Inference System and Multivariate Adaptive Regression Splines

سال انتشار: 1405
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 58

فایل این مقاله در 25 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_CIVLJ-14-2_004

تاریخ نمایه سازی: 28 مرداد 1404

چکیده مقاله:

Rockfalls are a type of landslide that poses significant risks to roads and infrastructure in mountainous regions worldwide. The main objective of this study is to predict the coefficient of restitution (COR) for limestone in rockfall dynamics using an adaptive neuro-fuzzy inference system (ANFIS) and Multivariate Adaptive Regression Splines (MARS). A total of ۹۳۱ field tests were conducted to measure kinematic, tangential, and normal CORs on three surfaces: asphalt, concrete, and rock. The ANFIS model was trained using five input variables: impact angle, incident velocity, block mass, Schmidt hammer rebound value, and angular velocity. The model demonstrated strong predictive capability, achieving root mean square errors (RMSEs) of ۰.۱۳۴, ۰.۱۹۳, and ۰.۲۱۷ for kinematic, tangential, and normal CORs, respectively. These results highlight the potential of ANFIS to handle the complexities and uncertainties inherent in rockfall dynamics. The analysis was also extended by fitting a MARS model (degree ۲, ۸ basis functions) to the same dataset. The MARS model achieved MAE ≈ ۰.۰۹۵ and RMSE ≈ ۰.۱۱۸—marginally improving over ANFIS—while delivering a fully explicit algebraic form and an intrinsic ranking of variable importance.

کلیدواژه ها:

Coefficient of restitution ، adaptive neuro-fuzzy inference system ، Rockfall ، Field test ، Multivariate Adaptive Regression Splines (MARS)

نویسندگان

Amir Hossein Shafiee

Assistant Professor, Faculty of Civil Engineering and Architecture, Shahid Chamran University of Ahvaz, Ahvaz, Iran

Nima Aein

Assistant Professor, Department of Civil Engineering, Dariun Branch, Islamic Azad University, Dariun, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Matsukura Y. Rockfall at Toyohama Tunnel, Japan, in ۱۹۹۶: effect ...
  • Sarro R, Mateos RM, García-Moreno I, Herrera G, Reichenbach P, ...
  • Geniş M, Sakız U, Çolak Aydıner B. A stability assessment ...
  • Hu J, Li S, Li L, Shi S, Zhou Z, ...
  • Shafiee AH, Falamaki A, Shafiee A, Arjmand F. Probabilistic analysis ...
  • Thakur T, Singh K, Sharma A. A Review on Analysis ...
  • Romana M. New adjustment ratings for application of Bieniawski classification ...
  • Qazi A, Singh K. Rock Mass Classification Techniques and Parameters: ...
  • Stevens WD. RocFall, a tool for probabilistic analysis, design of ...
  • PFEIFFER TJ, BOWEN TD. Computer simulation of rockfalls. Bull Assoc ...
  • Meriam JL, Kraige LG, Bolton JN. Engineering mechanics: dynamics. John ...
  • Buzzi O, Giacomini A, Spadari M. Laboratory investigation on high ...
  • Ansari MK, Ahmad M, Singh R, Singh TN. Correlation between ...
  • Li L, Sun S, Li S, Zhang Q, Hu C, ...
  • Asteriou P, Tsiambaos G. Effect of impact velocity, block mass ...
  • Asteriou P. Effect of impact angle and rotational motion of ...
  • Ji Z-M, Chen Z-J, Niu Q-H, Wang T-J, Song H, ...
  • Ji Z-M, Chen Z-J, Niu Q-H, Wang T-H, Wang T-J, ...
  • Tang J, Zhou X, Liang K, Lai Y, Zhou G, ...
  • Asteriou P, Saroglou H, Tsiambaos G. Geotechnical and kinematic parameters ...
  • Spadari M, Giacomini A, Buzzi O, Fityus S, Giani GP. ...
  • Ferrari F, Giani GP, Apuani T. Why can rockfall normal ...
  • Ji Z-M, Hu S-M, Chen Z-J, Niu Q-H, Wang T-H, ...
  • Zadeh LA. Fuzzy sets. Inf Control ۱۹۶۵;۸:۳۳۸–۵۳ ...
  • Ross TJ. Fuzzy logic with engineering applications. John Wiley & ...
  • Mamdani EH. Advances in the linguistic synthesis of fuzzy controllers. ...
  • Takagi T, Sugeno M. Derivation of fuzzy control rules from ...
  • Jang J-S. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst ...
  • Khajeh A, Mousavi SR, RAKHSHANI MM. Adaptive neural fuzzy inference ...
  • Ghorbani A, Ghasemi MR. Reliability and sensitivity analysis of structures ...
  • Polykretis C, Chalkias C, Ferentinou M. Adaptive neuro-fuzzy inference system ...
  • Razavi-Termeh SV, Shirani K, Pasandi M. Mapping of landslide susceptibility ...
  • Shafiee AH, Oulapour M, Abdlkadhim MAA. Stability of subsea circular ...
  • Friedman JH. Multivariate adaptive regression splines. Ann Stat ۱۹۹۱;۱۹:۱–۶۷ ...
  • Gan Y, Duan Q, Gong W, Tong C, Sun Y, ...
  • Shafiee AH, Neamani AR, Eskandarinejad A, Hosseini R, Gholami A. ...
  • Eskandarinejad A, Shiau J, Lai VQ, Keawsawasvong S. Predicting uplift ...
  • Nouri Y, Ghanizadeh AR, Safi Jahanshahi F, Fakharian P. Data-driven ...
  • Ghanizadeh AR, Safi Jahanshahi F, Ziayi A. Presenting a Model ...
  • Ghanizadeh AR, Ghanizadeh A, Asteris PG, Fakharian P, Armaghani DJ. ...
  • Ghanizadeh AR, Safi Jahanshahi F, Khalifeh V, Jalali F. Predicting ...
  • Ghanizadeh AR, Fakhri M. Prediction of frequency for simulation of ...
  • Fakharian P, Nouri Y, Ghanizadeh AR, Jahanshahi FS, Naderpour H, ...
  • D-۱۴ A. Standard Test Methods for Determination of Rock Hardness ...
  • Robotham ME, Wang H, Walton G. Assessment of risk from ...
  • Gili JA, Ruiz-Carulla R, Matas G, Moya J, Prades A, ...
  • Chiu SL. Fuzzy model identification based on cluster estimation. J ...
  • Jang J-SR, Sun C-T, Mizutani E. Neuro-fuzzy and soft computing-a ...
  • نمایش کامل مراجع