Estimating the Iodine number of activated carbon during thermal activation using Artificial Neural Networks (ANNs)
محل انتشار: دهمین کنگره ملی مهندسی شیمی ایران
سال انتشار: 1384
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 2,890
فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
NICEC10_046
تاریخ نمایه سازی: 6 بهمن 1385
چکیده مقاله:
Artificial neural network, a biologically inspired computing method which has an ability to learn, self-adjust, and be trained, provides a powerful tool in solving pattern recognition problems. In this study, a new approach based on artificial neural networks (ANNs) has been designed to estimate the Iodine number of activated carbon prepared from Iranian pistachio shell using the thermal activation in special activation conditions. 75% of 108 experimental data of preparation of activated carbon from pistachio shell have been used to train the network. This data include Iodine adsorption capacity (Iodine number) versus temperature, activation time and oxidizing gas type. The present work, applied the Tan-sigmoid transfer function in two layers in the feedforward neural network with backpropagation algorithm. The results from the network are in good agreement with the experimental data and the maximum error is 0.015%. Finally, it is shown that the application of artificial neural networks in estimating the Iodine number of activated carbon prepared from pistachio shell can help us as a valuable tool to predict behavior of the activation in other conditions.
کلیدواژه ها:
نویسندگان
Baroutian
Chemical Engineering Department, Shahid Bahonar University of Kerman, Kerman, Iran
saeed.baroutian@Gmail.com Jeirani
Chemical Engineering Department, Shahid Bahonar University of Kerman, Kerman, Iran
Hashemipour Rafsanjani
Chemical Engineering Department, Shahid Bahonar University of Kerman, Kerman, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :