AI and Machine Learning in Breast Cancer: Advancing Precision Medicine Through Data-Driven Models

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 36

فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJIEN-4-4_004

تاریخ نمایه سازی: 11 مرداد 1404

چکیده مقاله:

Artificial Intelligence (AI) and Machine Learning (ML) advancements have revolutionized precision medicine, offering transformative breast cancer diagnosis and treatment solutions. By leveraging vast datasets, AI-powered models provide enhanced accuracy in tumor detection, classification, and prognosis, surpassing traditional diagnostic methods. Machine learning algorithms, including deep learning networks, uncover intricate patterns within imaging, genomic, and clinical data, enabling personalized treatment strategies. This paper highlights the integration of AI in breast cancer care, discussing state-of-the-art techniques, challenges in clinical implementation, and future opportunities. Through a comparative analysis of data-driven models, we demonstrate their potential to optimize early detection, improve patient outcomes, and support oncologists in decision-making processes.Artificial Intelligence (AI) and Machine Learning (ML) advancements have revolutionized precision medicine, offering transformative breast cancer diagnosis and treatment solutions. By leveraging vast datasets, AI-powered models provide enhanced accuracy in tumor detection, classification, and prognosis, surpassing traditional diagnostic methods. Machine learning algorithms, including deep learning networks, uncover intricate patterns within imaging, genomic, and clinical data, enabling personalized treatment strategies. This paper highlights the integration of AI in breast cancer care, discussing state-of-the-art techniques, challenges in clinical implementation, and future opportunities. Through a comparative analysis of data-driven models, we demonstrate their potential to optimize early detection, improve patient outcomes, and support oncologists in decision-making processes.

نویسندگان

Anuradha Reddy

Department of Computer Science and Engineering, Malla Reddy Institute of Technology and Science, Hyderabad, India.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :