Artificial Intelligence in Biomedical Engineering: A Comprehensive Study

سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 56

فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ECMECONF24_069

تاریخ نمایه سازی: 4 مرداد 1404

چکیده مقاله:

AbstractThis study investigates the application of artificial intelligence (AI) in biomedical engineering, focusing on deep learning techniques to improve diagnostic accuracy in medical imaging. Assumptions include the superiority of convolutional neural networks (CNNs) over traditional machine learning methods in classifying biomedical images. Materials consist of multiple publicly available medical imaging datasets, including mammography, brain MRI, and chest X-rays. Methods involve implementing and comparing various CNN architectures (VGG۱۶, ResNet۵۰, InceptionV۳) with classical classifiers (SVM, Random Forest, k-NN). Transfer learning and data augmentation techniques were employed to enhance model generalization. Results show CNN models outperform traditional methods significantly, achieving up to ۹۲.۵% accuracy in breast cancer detection and comparable improvements in brain tumor and chest disease classification. These findings highlight the potential of AI to assist clinical diagnostics effectively.

نویسندگان

Mohammad Javad Sohrabi

۱Department of pharmacology, Faculty of pharmaceutical, Damghan Islamic Azad University, Damghan, Iran

Reza Zadali

۲Department of pharmacogenozy, Faculty of pharmaceutical, Damghan Islamic Azad University, Damghan, Iran

Mohammad Reza Sohrabi Renani

۳Department of medicine, Faculty of medicine, Guilan University of Medical Sciences, Rasht, Iran