Artificial Intelligence in Biomedical Engineering: A Comprehensive Study
سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 56
فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ECMECONF24_069
تاریخ نمایه سازی: 4 مرداد 1404
چکیده مقاله:
AbstractThis study investigates the application of artificial intelligence (AI) in biomedical engineering, focusing on deep learning techniques to improve diagnostic accuracy in medical imaging. Assumptions include the superiority of convolutional neural networks (CNNs) over traditional machine learning methods in classifying biomedical images. Materials consist of multiple publicly available medical imaging datasets, including mammography, brain MRI, and chest X-rays. Methods involve implementing and comparing various CNN architectures (VGG۱۶, ResNet۵۰, InceptionV۳) with classical classifiers (SVM, Random Forest, k-NN). Transfer learning and data augmentation techniques were employed to enhance model generalization. Results show CNN models outperform traditional methods significantly, achieving up to ۹۲.۵% accuracy in breast cancer detection and comparable improvements in brain tumor and chest disease classification. These findings highlight the potential of AI to assist clinical diagnostics effectively.
کلیدواژه ها:
نویسندگان
Mohammad Javad Sohrabi
۱Department of pharmacology, Faculty of pharmaceutical, Damghan Islamic Azad University, Damghan, Iran
Reza Zadali
۲Department of pharmacogenozy, Faculty of pharmaceutical, Damghan Islamic Azad University, Damghan, Iran
Mohammad Reza Sohrabi Renani
۳Department of medicine, Faculty of medicine, Guilan University of Medical Sciences, Rasht, Iran