Predicting Depression and Anxiety Using Digital Phenotyping and Machine Learning: Toward Personalized Mental Health Monitoring

سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 83

متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

AIMS02_698

تاریخ نمایه سازی: 29 تیر 1404

چکیده مقاله:

Background and Aims: Depression and anxiety are among the most prevalent mental health disorders globally, yet their diagnosis often relies on subjective clinical assessments. Advances in digital phenotyping—collecting behavioral and physiological data from smartphones and wearable devices—offer an opportunity for continuous and objective monitoring of mental health. This study investigates the use of machine learning algorithms to predict levels of depression and anxiety based on passive data collected from digital devices, aiming to develop a personalized and scalable mental health monitoring tool. Methods: A cohort of ۲۵۰ participants installed a mobile app that collected passive data over ۶۰ days, including GPS patterns, screen time, call/text logs, and sleep/activity metrics from wearables. Participants completed weekly PHQ-۹ and GAD-۷ questionnaires. Several models, including random forests, support vector machines, and deep neural networks, were trained to classify depression and anxiety severity levels. Results: The deep neural network model achieved the highest accuracy (F۱-score = ۰.۸۸ for depression, ۰.۸۴ for anxiety). Feature analysis showed that late-night screen time, decreased physical activity, and social withdrawal (e.g., fewer calls/messages) were strong predictors of poor mental health. The system provides weekly risk alerts and recommendations for follow-up care. Conclusion: Digital phenotyping combined with AI enables proactive and personalized mental health support. Our findings support the use of passive behavioral data in augmenting traditional psychiatric assessment and facilitating timely interventions.

نویسندگان

Marzieh Jafarzadeh Dashti

Department of Psychiatry Counselling, Abadan University of Medical Sciences, Abadan, Iran.

Zeynab Naseri

Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

Saeed Jelvay

Abadan University of Medical Sciences, Abadan, Iran.

Sadegh Sharafi

Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

Ferdos Hadideh

Department of Psychiatry Counselling, Abadan University of Medical Sciences, Abadan, Iran.