Analysis of Vascular Features and Vocal Cord Edges Using Histogram of Oriented Gradients and Convolutional Neural Networks

سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 54

متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

AIMS02_602

تاریخ نمایه سازی: 29 تیر 1404

چکیده مقاله:

Background and Aims: The vocal cords play a crucial role in sound production. Vocal cord lesions can lead to voice disorders. The blood vessels in the vocal cords help maintain the health and flexibility of the tissue by supplying blood and nutrients. Accurate identification of vascular features and the edges of the vocal cords is challenging using traditional methods. The aim of this study is to employ advanced image processing and deep learning techniques to improve diagnostic accuracy using Histogram of Oriented Gradients (HOG) and Convolutional Neural Networks (CNN). Methods: This study was conducted by searching the PubMed database and the Google Scholar search engine using the keywords 'stroboscope', 'artificial intelligence', 'laryngeal lesions' and 'effectiveness.' Among the relevant articles, ۱۳ studies published between ۲۰۱۱ and ۲۰۲۵ were reviewed. Results: Traditional methods, such as manual image inspection by specialists, have always faced challenges like human errors and time consumption. Therefore, the use of artificial intelligence algorithms and image processing techniques like HOG and CNN has emerged as novel solutions to improve both diagnostic accuracy and speed. Conclusion: The use of HOG was able to accurately identify the edges of the vocal cords. This method is particularly effective for diagnosis through image processing. The use of CNN demonstrated superior performance in classifying vascular features. Combining both HOG and CNN methods resulted in improved diagnostic accuracy for vascular features and vocal cord edges, achieving higher accuracy compared to specialists with ۱۰ to ۲۰ years of experience.

کلیدواژه ها:

نویسندگان

Fatemeh Rashteh

BSc student in Speech and Language Pathology, Student Research committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

Armin Khademian

BSc student in Speech and Language Pathology, Student Research committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

Sara Abedini

PhD Candidate in Speech and Language Pathology, Student Research committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran