Developing and Validating an Assessment Scale for Foreign Language Teacher Agency
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 30
فایل این مقاله در 18 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_ELT-17-35_015
تاریخ نمایه سازی: 20 تیر 1404
چکیده مقاله:
Foreign language (FL) teacher agency, as a significant part of teachers’ professional development, encompasses self-organized efforts to augment professional growth. This study aimed to develop an ecological FL teacher agency model through a sequential exploratory mixed methods design based on which an assessment scale measuring FL teachers' agency value was developed. In the qualitative phase, developing and validating the FL teacher agency model, firstly, an interview guide was developed and piloted in a group of ۱۰ TEFL teacher educators from Farhangian Teacher Education University in Tehran. Then, ۳۰ in-service EFL teachers were interviewed. The data were analyzed through MAXQDA to find the components of the tentative conceptual model of teacher agency. Based on the interview analysis, the preliminary draft of the EFL teacher agency scale was developed. The refined EFL teacher agency questionnaire encompassing the three components of Autonomy, Freedom, and Choice was administered to ۳۵۴ randomly selected EFL teachers. The scale's reliability was gained through Cronbach's alpha, and its construct validity through Exploratory Factor Analysis (EFA). The study findings could be used by foreign language teachers, teacher educators, and TEFL teacher agency researchers.
کلیدواژه ها:
نویسندگان
Sara Mirzaee
PhD Candidate, Department of English, Alzahra University, Tehran, Iran
Zohreh Nafissi
Associate Professor, Department of English, Alzahra University, Tehran, Iran
Mehrdad Amiri
Assistant Professor, Department of English Language Teaching, Farhangian University, Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :