Neurotransmitter-Inspired Reinforcement Learning Modules for Neuromorphic Computing

سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 69

فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

EECMAI11_086

تاریخ نمایه سازی: 11 تیر 1404

چکیده مقاله:

Though they frequently lack the functional diversity of biological neural systems, neuromorphic computing systems have demonstrated promise in simulating brain-like processing. By incorporating five different neurotransmitter-inspired modules — dopamine, serotonin, acetylcholine, GABA, and glutamate — each mapped to particular cognitive processes and embodied reinforcement learning (RL) metaphors, this study offers a novel approach to neuromorphic chip design. We show how these modules can be combined to form a more adaptable and versatile neuromorphic architecture through the use of metaheuristic optimization techniques. We demonstrate our system through three experiments: (۱) parallel neurotransmitter processing improves multitasking performance, (۲) functional compensation when certain modules are compromised, and (۳) holistic integration enables emergent decision-making capabilities. The findings show that neuromorphic computing capabilities are greatly improved by biomimetic neurotransmitter diversity, especially in dynamic, complex environments that call for adaptive behavior.

نویسندگان

Abolhassan Eslami

University of Isfahan

Sharareh Ahmadi

Kermanshah University of Medical Sciences