بازسازی مولفه های از دست رفته گفتار با استفاده از مدل مخلوط تجزیه عامل های غیر پارامتری

سال انتشار: 1391
نوع سند: مقاله کنفرانسی
زبان: فارسی
مشاهده: 838

متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICBME19_101

تاریخ نمایه سازی: 9 بهمن 1392

چکیده مقاله:

عملکرد سیستم های بازشناسی خودکار گفتار در حضور نویز به شدت کاهش می یابد. الگوریتم های زیادی برای فائق آمدن بر اثرات نویز اضافه شده به گفتار ارائه شئه است. از جمله رویکرد هایی که در سال های اخیر برای غلبه بر این ضعف مورد توجه قرار گرفته است، روش های ویژگی از دست رفته می باشد. روش ویژگی های از دست رفته با الهام از سیستم شنوایی انسان سعی می کند تا تنها با تکیه بر افزونگی اطلاعات موجود در سیگنال گفتار و بر اساس اطلاعات موجودی که کمتر تحت تاثیر نویز قرار گرفته اند و همچنین بدون استفاده از اطلاعا مدل نویز،بازشناسی را انجام دهد. در این مقاله، با توجه به شباهت ساختار مسئله ویژگی از دست رفته با تئوری سنجش فشرده، روش مزکور را به مسئله ویژگی از دست رفته تطبیق می دهیم و از آن در حوزه گفتار، و با هدف بازیابی مولفه های طیف گفتار استفاده می کنیم. برای این منظور، ابتدا بر روی داده های تمیز گفتار مدل NMFA را آموزش می دهیم. سپس عناصر ماتریس سنجش را مطابق با مولفه های از دست رفته آرایش می دهیم. در نهایت با استفاده از مدل NMFAموجود، تخمینی از این مولفه ها را بدست می آوریم. نتیجه پیاده سازی روش پیشنهتدی عملکرد موفق آن در مقایسه با یکی از رایج ترین روش ها در این زمینه نشان می دهد.

کلیدواژه ها:

بازسازی ویژگی های از دست رفته ، بازشناسی گفتار ، مدل مخلوط تجزیه عامل های غیر پارامتری

نویسندگان

محمد محسن گودرزی

دانشگاه صنعتی امیرکبیر،دانشکده مهندسی پزشکی

فرشاد الماس گنج

دانشگاه صنعتی امیرکبیر، دانشگاه صنعتی پزشکی

یاسر شکفته

دانشگاه صنعتی امیرکبیر،دانشکده مهندسی پزشکی