Application of Genetic Algorithm Based Support Vector Machine Model in Second Virial Coefficient Prediction of Pure Compounds

سال انتشار: 1397
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 49

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJCCE-37-5_020

تاریخ نمایه سازی: 17 خرداد 1404

چکیده مقاله:

In this work, a Genetic Algorithm boosted Least Square Support Vector Machine model by a set of linear equations instead of a quadratic program, which is improved version of Support Vector Machine model, was used for estimation of ۹۸ pure compounds second virial coefficient. Compounds were classified to the different groups. Finest parameters were obtained by Genetic Algorithm method for training data. The accuracy of the Genetic Algorithm boosted Least Square Support Vector Machine was compared with four empirical equations that are well-known and are claimed can predict all compounds second virial coefficients (Pitzer, Tesonopolos, Gasanov RK and Long Meng). Results showed that in all classes of compounds, the Genetic Algorithm boosted Least Square Support Vector Machine method was more accurate than these empirical correlations. The Average Relative Deviation percentage of overall data set was ۲.۵۳ for the Genetic Algorithm boosted Least Square Support Vector Machine model while the best Average Relative Deviation percentage for empirical models (Tesonopolos) was ۱۵.۳۸. When the molecules become more complex, the difference in accuracy becomes sharper for empirical models where the proposed Genetic Algorithm boosted Least Square Support Vector Machine model have predicted good results for classes of compounds that empirical correlations usually fail to give good estimates.

نویسندگان

Mohammad Soleimani Lashkenar

Faculty of Engineering Modern Technologies, Amol University of Special Modern Technologies, ۴۶۱۶۸۴۹۷۶۷ Amol, I.R. IRAN

Bahman Mehdizadeh

National Iranian South Oil Company, Ahwaz, I.R. IRAN

Kamyar Movagharnejad

Faculty of Chemical Engineering, Babol University of Technology, Babol, I.R. IRAN

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :