Precise Prediction of Interface Distribution of Materials in Multiphase Separation Facilities Using a Low-Cost and Simple Technique: ANN
سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 55
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJCCE-39-5_024
تاریخ نمایه سازی: 17 خرداد 1404
چکیده مقاله:
The ability to precisely detect the interface of the different phases in a vessel plays an important role in chemical plants, oil, and petroleum industry. The purpose of this research is to apply the gamma-ray attenuation technique (single point source and single detector) together with MultiLayer Perceptron (MLP) neural network to detect the interface present in water-gasoil two-phase flows in pipelines and vessels, for the first time. The experimental setup is comprised of a plastic rod scintillator (BC۴۰۰) coupled with two PMT tubes at two sides as a position-sensitive detector, a point gamma-ray source (۱۳۷Cs), and a vessel between the source and detector. The detection system provides the required data for training and testing the network. Using this proposed method, the interface locations were determined in two-phase with mean relative error percentages less than ۰.۳۴% and ۰.۲۷% for levels of water and gasoil, respectively. The mean absolute error values were measured less than ۱.۱۶ and ۱. Also, the correlation coefficients were calculated ۰.۹۹۹ and ۱. These results presented the accuracy of the proposed method in order to determine the interface position. The used set-up is simpler than other proposed techniques and cost, radiation safety, shielding requirements, and risk production are minimized.
کلیدواژه ها:
Interface level position ، Plastic rod scintillator ، Artificial Neural Network ، Single point source - single detector
نویسندگان
Reza Gholipour Peyvandi
Faculty of Physics, Shahrood University of Technology, Shahrood, I.R. IRAN
Seyedeh Zahra Islami Rad
Department of Physics, Faculty of Science, University of Qom, I.R. IRAN
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :