An AI-Based Modelling of a Sorption Enhanced Chemical-Looping Methane Reforming Unit

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 79

فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJCCE-42-7_003

تاریخ نمایه سازی: 17 خرداد 1404

چکیده مقاله:

Hydrogen as a green fuel has attracted enormous attention recently. Although hydrogen combustion produces no harmful by-products, hydrogen production can be almost disastrous. Hydrogen production mainly originates from fossil fuels, and more than ۸۰% of hydrogen production is produced using fossil fuel reformation with CO۲ formation as a by-product. Light hydrocarbon gases, predominantly methane, are extensively used for hydrogen production. While methane reforming is an economical and efficient process, decarburization of flue gas can be a challenge. Processes involving chemical looping can be used to mitigate these challenges, and they are favorable for simultaneous CO۲ capture during hydrogen generation. Intelligent models can help have accurate monitoring of such plants. The aim of this paper is to provide an Artificial Intelligence (AI) based approach to model a Sorption-Enhanced Chemical-Looping Reforming (SECLR) unit. To this end first, a SECLR unit was simulated using ASPEN Plus version ۱۱. Then the simulation results were validated by experimental data, and the SECLR unit went through ۳۱۰۰۰ different scenarios. The derived data from ASPEN Plus was modeled and simulated with machine learning methods to estimate the CH۴ conversion, H۲ Purity, and CO۲ removal in the SECLR process. Artificial neural networks, ensemble learning, and support vector machine methods were developed to predict the CH۴ conversion, H۲ Purity, and CO۲ removal in a SECLR unit. All three models could provide satisfactory results for predicting CH۴ conversion, CO۲ removal, and H۲ Purity. According to statistical evaluations, Artificial Neural Network (ANN) outperformed Support Vector Machine (SVM) and ensemble learning in producing results with lower error values and higher accuracy with an average ۵.۲۳e-۵ of error and R۲ of ۰.۹۸۶۴.

نویسندگان

Reza Salehi

Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Bologna, ITALY

Hassan Rahimzadeh

Department of Biosystems Engineering, Isfahan University of Technology, Isfahan, I.R. IRAN

Pouria Heidarian

Energy Department, Politecnico di Milano, Milan, ITALY

Farhad Salimi

Department of Chemical Engineering, Kermanshah Branch, Islamic Azad University, Kermanshah, I.R. IRAN

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Cerqueira P., Soria M., Madeira L.M., Hydrogen Production through Chemical ...
  • Mutlu A.Y., Yucel O., An Artificial Intelligence Based Approach to ...
  • Kalamaras C.M., Efstathiou A.M., "Hydrogen Production Technologies: Current State and ...
  • Powell J., et al., Optimisation of a Sorption-Enhanced Chemical Looping ...
  • Norouzi N., Kalantari G., Talebi S., Combination of Renewable Energy ...
  • Norouzi N., et al., Heavy Oil Thermal Conversion and Refinement ...
  • Kartal F., Özveren U., A Deep Learning Approach for Prediction ...
  • Zhao Y., et al., Thermodynamic Analysis of a New Chemical ...
  • Saithong N., et al., Thermodynamic Analysis of the Novel Chemical ...
  • Mattisson T., Lyngfelt A., Applications of Chemical-Looping Combustion with Capture ...
  • Di Z., et al., Thermodynamic Analysis on the Parametric Optimization ...
  • Zhang Q., et al., Multifunctional Ni-Based Oxygen Carrier for H۲ ...
  • Li F., et al., Modelling of a Post-Combustion CO۲ Capture ...
  • Khajehpour H., Norouzi N., Fani M., An Exergetic Model for ...
  • Norouzi N., et al., A ۴E Analysis of Renewable formic ...
  • Norouzi N., et al., Energy, Exergy, and Exergoeconomic (۳E) Analysis ...
  • Norouzi N., Talebi S., Exergy, Economical and Environmental Analysis of ...
  • Norouzi N., Hydrogen Production in the Light of Sustainability: A ...
  • Norouzi N., The Pahlev Reliability Index: A Measurement for the ...
  • Norouzi N., Fani M., Talebi S., Exergetic Design and Analysis ...
  • Khajehpour H., et al., Exergy Analysis and Optimization of Natural ...
  • Norouzi N., Shiva N., Khajehpour H., Optimization of Energy Consumption ...
  • Norouzi N., et al., Exergy and Exergoeconomic Analysis of Hydrogen ...
  • Norouzi N., H Khajehpour, Simulation of Methane Gas Production Process ...
  • Norouzi N., Talebi S., Najafi P., Thermal-Hydraulic Efficiency of a ...
  • Khajehpour H., Norouzi N., Fani M., An Exergetic Model for ...
  • Norouzi N., ۴E Analysis and Design of a Combined Cycle ...
  • Shalaby A., et al., A Machine Learning Approach for Modeling ...
  • Bai Z., et al., Modelling of a Post-Combustion CO۲ Capture ...
  • Valera V.Y., Codolo M.C., Martins T.D., Artificial Neural Network for ...
  • Rydén M., Ramos P., H۲ Production with CO۲ Capture by ...
  • Elmaz F., Yücel Ö., Mutlu A.Y., Predictive Modeling of Biomass ...
  • Ahmad, I., et al., Machine Learning Applications in Biofuels’ Life ...
  • Nkulikiyinka P., et al., Prediction of Sorption Enhanced Steam Methane ...
  • نمایش کامل مراجع