A Method for Pre-Calibration of DI Diesel Engine Emissions and Performance Using Neural Network and Multi-Objective Genetic Algorithm
سال انتشار: 1388
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 68
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJCCE-28-4_007
تاریخ نمایه سازی: 16 خرداد 1404
چکیده مقاله:
Diesel engine emission standards are being more stringent as it gains more publicity in industry and transportation. Hence, designers have to suggest new controlling strategies which result in small amounts of emissions and a reasonable fuel economy. To achieve such a target, multi-objective optimization methodology is a good approach inasmuch as several types of objective are minimized or maximized simultaneously. In this paper, this technique is implemented on a closed cycle two-zone combustion model of a DI (direct injection) diesel engine. The main outputs of this model are the quantity of NOx, soot (which are the two main emissions in diesel engines) and engine performance. The optimization goal is to minimize NOx and soot while maximizing engine performance. Fuel injection parameters are selected as design variables. A neural network model of the engine is developed as an alternative for the complicated and time-consuming combustion model in a wide range of engine operation. Finally design variables are optimized using an evolutionary genetic algorithm, called NSGA-II.
کلیدواژه ها:
نویسندگان
Ehsan Samadani
Department of Mechanical Engineering, K.N. Toosi University of Technology, Tehran, I.R. IRAN
Amir Hossein Shamekhi
Department of Mechanical Engineering, K.N. Toosi University of Technology, Tehran, I.R. IRAN
Mohammad Hassan Behroozi
Department of Mechanical Engineering, Iran University of Science and Technology, Tehran, I.R. IRAN
Reza Chini
Department of Mechanical Engineering, K.N. Toosi University of Technology, Tehran, I.R. IRAN
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :