Development of Corrosion Prediction Approach for Natural Gas Pipelines: A Novel Deep Learning SVM Method

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 13

فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJCCE-44-2_019

تاریخ نمایه سازی: 16 خرداد 1404

چکیده مقاله:

Managing corrosion in oil and gas pipelines poses significant challenges due to the complex nature of corrosion processes, including their initiation, progression, and stabilization. This research introduces an advanced hybrid prediction model, EMD–IPSO–SVM, designed to forecast internal corrosion in natural gas pipelines through a four-step process: data preprocessing, optimization, prediction, and evaluation. The model is validated using a dataset of ۱۲۰ samples from natural gas pipelines in southwestern Iran. The EMD algorithm is employed to reduce noise and highlight key features of the corrosion data, while stratified sampling ensures accurate and unbiased separation of training and test datasets. An enhanced particle swarm optimization method is used to fine-tune the parameters of the support vector regression model. The model’s performance is assessed comprehensively, showing impressive results with a Prediction Effectiveness (PE) value of ۰.۸۹, a Grey Relational Degree (GRD) of ۰.۸۰, a Root Means Square Error (RMSE) of ۰.۰۴۴, a root mean squared error of prediction (RMSEP) of ۰.۰۴۱, a coefficient of determination of ۰.۹۲۵, and a Mean Absolute Percentage Error (MAPE) of ۵.۷۳%. These metrics indicate that the hybrid model outperforms current state-of-the-art models, offering enhanced prediction accuracy. This approach not only improves corrosion control but also supports the digital transformation efforts within the corrosion management industry.

کلیدواژه ها:

Support vector machines (SVMs) ، Particle Swarm Optimization (PSO) ، Corrosion ، prediction ، Gas Pipeline

نویسندگان

Zahra Naserzadeh

Faculty of Environment, University of Tehran, Tehran, IR. IRAN

Ahmad Nohegar

Faculty of Environment, University of Tehran, Tehran, IR. IRAN

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Bhandari J., Khan F., Abbassi R., Garaniya V., Ojeda R., ...
  • Chen C., Li C., Reniers G., Yang F., Safety and ...
  • Wongpanya P., Saramas Y., Chumkratoke C., Wannakomol A., Erosion–Corrosion Behaviors ...
  • Feng Q., Yan B., Chen P., Shirazi S.A., Failure Analysis ...
  • Gao J., Yang P., Li X., Zhou J., Liu J., ...
  • Pesinis K., Tee K.F., Statistical Model and Structural Reliability Analysis ...
  • Nešić S., Key Issues Related to Modelling of Internal Corrosion ...
  • Caleyo F., Velázquez J.C., Valor A., Hallen J.M., Markov Chain ...
  • Velázquez J.C., Cruz-Ramirez J.C., Valor A., Venegas V., Caleyo F., ...
  • Shabarchin O., Tesfamariam S., Internal Corrosion Hazard Assessment of Oil ...
  • Li S.-X., Yu S.-R., Zeng H.-L., Li J.-H., Liang R., ...
  • Arzaghi E., Ramirez J.C.C., Valor A., Venegas V., Caleyo F., ...
  • Gomes W.J.S., Beck A.T., Haukaas T., Optimal Inspection Planning for ...
  • Yang Y., Khan F., Thodi P., Abbassi R., Corrosion Induced ...
  • Jun Y., Wang L.J.W., Wang J., Xiong Ch., Zou L., Li L., Da-wang Li., Steel Corrosion ...
  • Cai Y., Xu Y., Zhao Y., Zhou K., Ma X., ...
  • Pei Z., Wang J.-W., Wang J., Xiong Ch., Zou L., ...
  • Ren C.Y., Qiao W., Tian X., Natural Gas Pipeline Corrosion ...
  • Liao K., Yao Q., Wu X., Jia W., A Numerical ...
  • Noor N.M., Yahaya N., Ozman N.A.N., Othman S.R., The Forecasting ...
  • Hallen J.M., Caleyo F., Gonzalez J.L., “Probabilistic Condition Assessment of ...
  • Sinha S.K., Pandey M.D., Probabilistic Neural Network for Reliability Assessment ...
  • El Amine Ben Seghier M., Keshtegar B., Elahmoune B., Reliability ...
  • Ahammed M., Probabilistic Estimation of Remaining Life of a Pipeline ...
  • Ossai C.I., Corrosion Defect Modelling of Aged Pipelines with a ...
  • Ossai C.I., Boswell B., Davies I., Markov Chain Modelling for ...
  • Kenny E.D., Paredes R.S.C., De Lacerda L.A, Sica Y.C., De ...
  • Alizadeh M., Sadrameli S.M., Modeling of Thermal Cracking Furnaces Via ...
  • El Amine Ben Seghier M., Keshtegar B., Tee K.F., Zayed ...
  • Zarringhalam A., Alizadeh M., Rafiee J., Moshirfarahi M.M., Neural Network ...
  • Chandrashekar G., Sahin F., A Survey on Feature Selection Methods, ...
  • Seghier M.A., Keshtegar B., Taleb-Berrouane M., Trung N., Advanced Intelligence ...
  • Velázquez J.C., Caleyo F., Valor A., Hallen J.M., Predictive Model ...
  • Alamilla J.L., Sosa E., Stochastic Modelling of Corrosion Damage Propagation ...
  • Ossai C.I., Boswell B., Davies I.J., Modelling the Effects of ...
  • Naserzadeh Z., Nohegar A., Development of Hgapso-Svr Corrosion Prediction Approach ...
  • نمایش کامل مراجع