A Robust Opinion Spam Detection Method Against Malicious Attackers in Social Media

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 73

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJWR-8-2_001

تاریخ نمایه سازی: 16 خرداد 1404

چکیده مقاله:

Online reviews are crucial in influencing consumer decisions and business practices. However, some individuals exploit this system by posting fake reviews, known as spam opinions, to manipulate perceptions. Spam detection systems face significant challenges in robustness due to their primary focus on identifying spam attacks without accounting for adversaries that target the detection mechanisms. This oversight enables spammers to exploit vulnerabilities in traditional algorithms with complex deceptive strategies, ultimately undermining their effectiveness. This paper proposes a novel multi-layer graph-based method that represents reviews, reviewers, and products as interconnected nodes. This approach captures the complex relationships among them and addresses adversarial attempts to manipulate the detection process. Our approach utilizes three key nodes—opinion, reviewer, and product—to assess the honesty, trust, and reliability of reviews, reviewers, and products in the context of potential deception. Furthermore, we develop a simulation tool capable of generating diverse attack scenarios, including those targeting the detection system itself, enabling a comprehensive evaluation of robustness. We compared the performance of our method with other graph-based techniques through simulations and case studies, demonstrating that our method is a competitive solution among existing alternatives.

نویسندگان

Amir Jalaly Bidgoly

Department of Information Technology and Computer Engineering, University of Qom, Qom, Iran

Zolikha Rahmanian

Department of Information Technology and Computer Engineering, University of Qom, Qom, Iran

Abbas Dehghani

Department of Computer Engineering, Faculty of Engineering, Yasouj University, Yasouj, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • C. Esposito, V. Moscato, and G. Sperlì, “Detecting malicious reviews ...
  • A. Mewada and R. K. Dewang, “A comprehensive survey of ...
  • R. K. Dewang and A. K. Singh, “State-of-art approaches for ...
  • N. Jindal and B. Liu, “Opinion spam and analysis,” in ...
  • R. Narayan, J. K. Rout, and S. K. Jena, “Review ...
  • A. Pak and P. Paroubek, “Twitter as a corpus for ...
  • M. Diqi, “TwitterGAN: robust spam detection in twitter using novel ...
  • G. Wang, S. Xie, B. Liu, and S. Y. Philip, ...
  • S. Fayazbakhsh and J. Sinha, “Review spam detection: a network-based ...
  • D. Zhang, J. Xu, V. Zadorozhny, and J. Grant, “Fake ...
  • A. Heydari, M. ali Tavakoli, N. Salim, and Z. Heydari, ...
  • M. S. Lakshmi, A. S. Rani, T. S. Divya, and ...
  • C. G. Harris, “Detecting deceptive opinion spam using human computation,” ...
  • F. H. Li, M. Huang, Y. Yang, and X. Zhu, ...
  • E.-P. Lim, V.-A. Nguyen, N. Jindal, B. Liu, and H. ...
  • D. Radovanović and B. Krstajić, “Review spam detection using machine ...
  • N. Jindal and B. Liu, “Analyzing and detecting review spam,” ...
  • N. Jindal, B. Liu, and E.-P. Lim, “Finding unusual review ...
  • G. Wang, S. Xie, B. Liu, and P. S. Yu, ...
  • S. P. Algur, A. P. Patil, P. S. Hiremath, and ...
  • S. Banerjee and A. Y. K. Chua, “Applauses in hotel ...
  • M. Ott, C. Cardie, and J. Hancock, “Estimating the prevalence ...
  • G. Fei, A. Mukherjee, B. Liu, M. Hsu, M. Castellanos, ...
  • S. Xie, G. Wang, S. Lin, and P. S. Yu, ...
  • A. Heydari, M. Tavakoli, and N. Salim, “Detection of fake ...
  • S. Xie, G. Wang, S. Lin, and P. S. Yu, ...
  • A. Mukherjee, B. Liu, J. Wang, N. Glance, and N. ...
  • Z. Wang, T. Hou, D. Song, Z. Li, and T. ...
  • A. J. Bidgoly, “Probabilistic analysis of trust based decision making ...
  • A. J. Bidgoly and F. Arabi, “Robustness evaluation of trust ...
  • A. Khalili, A. Jalaly Bidgoly, and M. Abdollahi Azgomi, “PDETool: ...
  • A. Khalili, M. Abdollahi Azgomi, and A. Jalaly Bidgoly, “SimGine: ...
  • F. M. Harper and J. A. Konstan, “The movielens datasets: ...
  • نمایش کامل مراجع