Multi-label node classification in heterogeneous networks using graph convolutional networks

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 42

فایل این مقاله در 23 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_KJMMRC-14-2_004

تاریخ نمایه سازی: 13 خرداد 1404

چکیده مقاله:

This paper explores graph embedding techniques for effectively analyzing large, heterogeneous graphs with complex and noisy patterns. Graphs represent data through nodes (entities) and edges (relationships), and when dealing with large-scale data, effective search methods are crucial. Graph embedding helps evaluate node significance and transforms data into latent space representations. It also addresses challenges like handling multi-label data in heterogeneous networks, where nodes may have multiple labels describing complex concepts. Traditional methods struggle with such multi-label scenarios and fail to capture label dependencies. The paper introduces a Graph Neural Network (GCN)-based node embedding method, which extends traditional neural networks to graph data. GCNs allow the extraction of local features from nodes and their neighbors, making them useful for heterogeneous networks. By integrating label information into the embedding process, the method improves relationships between labels. The proposed approach transforms neighboring labels into continuous vectors, structured into a matrix for learning. This enhances the overall network embedding. The method outperforms previous techniques, demonstrating improved performance on real-world datasets, such as a ۲.۴% improvement on the IMDB dataset and ۹.۳% on the DBLP dataset. The paper discusses graph embedding techniques in the first section and explores the potential of multi-label embedding in non-uniform graphs, suggesting future research directions in the final section. The article's code link on GitHub can also be found at the following: https://github.com/frshkara/EGSA.

نویسندگان

Sajad Bastami

Department of Computer Engineering, Kordestan University, Sanandej, Iran

Mohammad Bagher Dowlatshahi

Department of Computer Engineering, Lorestan University, Khoramabad, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Zhang, M.-L. and Z.-H. Zhou, A review on multi-label learning ...
  • Read, J., et al., Classi er chains for multi-label classi ...
  • V. Chauhan and A. Tiwari, \Randomized neural networks for multilabel ...
  • M.A. Tahir, J. Kittler, and A. Bouridane, \Multilabel classi cation ...
  • Tsitsulin, A., et al., Graph clustering with graph neural networks. ...
  • Kipf, T.N. and M. Welling, Semi-supervised classi cation with graph ...
  • You, J., Z. Ying, and J. Leskovec, Design space for ...
  • Gibaja, E. and S. Ventura, A tutorial on multilabel learning. ...
  • Wu, Z., et al., A comprehensive survey on graph neural ...
  • Kumar, V., et al., Multi-label classi cation using hierarchical embedding. ...
  • Vembu, S. and T. Gartner, Label ranking algorithms: A survey, ...
  • Liu, S., et al., Query۲Label: A Simple Transformer Way to ...
  • Hamilton, W.L., R. Ying, and J. Leskovec, Representation learning on ...
  • Mikolov, T., et al. Distributed representations of words and phrases ...
  • Perozzi, B., R. Al-Rfou, and S. Skiena. Deepwalk: Online learning ...
  • Huang, X., J. Li, and X. Hu. Label informed attributed ...
  • Shi, M., Y. Tang, and X. Zhu, MLNE: Multi-label network ...
  • Guo, Z., et al., A two-level topic model towards knowledge ...
  • Zhang, L., et al., A modi ed stochastic neighbor embedding ...
  • Szymanski, P., T. Kajdanowicz, and N. Chawla, LNEMLC: Label network ...
  • Sun, X., et al., Label embedding network: Learning label representation ...
  • Cai, H., V.W. Zheng, and K.C.-C. Chang, A comprehensive survey ...
  • R. Rastogi and S. Mortaza, \Multi-label classi cation with Missing ...
  • I. Ullah, M. Manzo, M. Shah, and M. G. Madden, ...
  • Meihao Chen, Zhuoru Lin, Kyunghyun Cho. Graph Convolutional Networks for ...
  • Z. Li, Y. Liu, Z. Zhang, S. Pan, J. Gao, ...
  • Y. Wu, Y. Song, H. Huang, F. Ye, X. Xie, ...
  • Thomas N Kipf and Max Welling. Semi-supervised classi cation with ...
  • Shi, M., et al., Multi-Label Graph Convolutional Network Representation Learning. ...
  • Y. Du, W. Guo, J. Liu, and C. Yao, \Classi ...
  • Y. Xiao, P. Quan, M. Lei, and L. Niu, \Latent ...
  • L. Zong, X. Zhang, H. Yu, Q. Zhao, and F. ...
  • N. Tong, Y. Tang, B. Chen, and L. Xiong, \Representation ...
  • T. Zhao, N. T. Dong, A. Hanjalic, and M. Khosla, ...
  • Z. Qin, H. Chen, Y. Mi, C. Luo, S.-J. Horng, ...
  • نمایش کامل مراجع