پیش بینی زمان انتظار سفارشات قطعات خودرو در زنجیره تامین با استفاده از یادگیری ماشین

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 60

فایل این مقاله در 37 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IMS-13-52_003

تاریخ نمایه سازی: 29 اردیبهشت 1404

چکیده مقاله:

هدف این پژوهش بررسی عوامل موثر در پیش بینی زمان انتظار و ایجاد مدل پیش بینانه زمان انتظار سفارشات کانبان به جهت بهبود پایداری و تاب آوری در زنجیره تامین ناب می باشد. برای دستیابی به این هدف، مطالعه از روش داده کاوی پیروی می کند، مجموعه داده ها شامل ۱۰۳۰۲۳ مشاهده، ازسیستم کانبان واکسترانت زنجیره تامین با رعایت الزامات شاخص های کیفیت دیتاست در بازه ۶/۱۴۰۲ تا ۱۱/ ۱۴۰۲ استخراج شده است. ابتدا شاخص های موثر بر زمان انتظار سفارشات استخراج شده است و به جهت بهبود عملکرد و دقت پیش بینی، از فرآیندکاوی جهت شناسایی متغیرهای پرتکرار و تاثیرگذار در واریانت های اصلی و سپس در مرحله برازش مدل، از رویکرد تحلیل گام به گام تلفیقی جهت انتخاب ویژگی ها و از تنظیم پارامتر رویکردهای رگرسیونی ناپارامتریک استفاده شده است. مدل پیش بینانه با استفاده از مدل های رگرسیونی خطی چندمتغیره، چندمتغیره دارای انحنا، لاسو، الاستیک نت، درخت تصمیم تقویتی، جنگل تصادفی بوت استرپ، k- نزدیک ترین همسایه، شبکه عصبی تقویتی برازش داده شده است. عملکرد مدل های رگرسیونی برازش شده با استفاده از شاخص های ارزیابی R^۲ ، RASE و اعتبارسنجی نتایج و مدل تایید شده است. نتایج نشان داد که عوامل لجستیکی در زمان انتظار سفارشات موثر بوده و الگوریتم شبکه عصبی تقویت شده بهترین مدل در پیش بینی زمان انتظار سفارشات با دقت ۹۶ درصد و با خطا ۸۴/۵ است. سپس قابلیت پیش بینی مدل برای دیتاهای جدید در سیستم صدور سفارشات کانبان به کار گرفته شده است، نتایج و بهبودهای حاصل از بهره گیری قابلیت های داده کاوی در سیستم کانبان همگی بیان گر تاثیر معنی دار ترکیب ابزار ناب و یادگیری ماشین به جهت توانمندسازی و تاب آوری زنجیره تامین ناب می باشد.

کلیدواژه ها:

یادگیری ماشین ، رگرسیون ، مدیریت زنجیره تامین ناب ، کانبان ، زمان انتظار

نویسندگان

فائزه زمانی

دانشجوی دکتری رشته مدیریت صنعتی، واحد علوم و تحقیقات ،دانشگاه آزاد اسلامی ، تهران، ایران

احمد ابراهیمی

استادیارگروه مدیریت صنعتی و تکنولوژی،واحد علوم و تحقیقات ، دانشگاه آزاد اسلامی ، تهران، ایران ، نویسنده مسئول: Ahmad.Ebrahimi@srbiau.ac.ir

رویا سلطانی

استادیارگروه مهندسی صنایع، دانشگاه خاتم، تهران، ایران

بابک فرهنگ مقدم

دانشیار موسسه مطالعات برنامه ریزی و مدیریت، تهران، ایران

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :