Exploring the Use of Explainable Artificial Intelligence (XAI) in Production and Operations: A Systematic Review
محل انتشار: مجله مطالعات اقتصاد دانش، دوره: 1، شماره: 2
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 71
فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_KES-1-2_001
تاریخ نمایه سازی: 27 اردیبهشت 1404
چکیده مقاله:
Today, with the development of artificial intelligence, its application in different areas, including production and operations, has expanded. Explainable artificial intelligence (XAI) is a new research topic that has emerged with the development of artificial intelligence. This study aimed to investigate the applications of XAI in production and operations using the systematic review approach. For this purpose, a systematic review of the most recent studies published in the Science Direct, Scopus, and Emerald knowledge bases was conducted. After screening through different stages, ۲۹ articles were reviewed and analyzed. The results showed that publications on XAI have been on an upward trend in recent years, with a significant increase observed from ۲۰۲۱ to ۲۰۲۴. Also, the fields of engineering, production, decision-making, and computer science are the major areas in which recent studies have been published. The results also suggested that the largest scope of XAI application was observed at the organizational level, followed by the industrial level. Based on the findings, the fields of production and operations, followed by logistics and supply chain, were the most frequently studied areas. Regarding the methods used, the SHAP method was the most commonly applied method in the XAI studies, followed by Integrated Gradient and SVM methods. In general, the results of this study showed that XAI is a new field of research that is gradually developing in terms of methodology and areas of application.
کلیدواژه ها:
نویسندگان
Seyed Mohammadbagher Jafari
Associate Professor, Faculty of Management & Accounting, College of Farabi, University of Tehran, Iran.
Alireza Payvar
Ph.D. Candidate, Faculty of Management and Accounting College of Farabi, University of Tehran, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :