Solving the Transportation Problem using Meta-Heuristic Algorithms

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 51

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_GADM-9-1_002

تاریخ نمایه سازی: 24 اردیبهشت 1404

چکیده مقاله:

In this paper, the transportation problem is thoroughly analyzed and solved using three different meta-heuristic algorithms. The transportation problem, a fundamental optimization issue in operations research, involves determining the most efficient way to distribute goods from multiple supply sources to multiple destinations while minimizing overall transportation costs. Traditional exact methods may struggle to provide solutions in a reasonable time frame, especially as the size and complexity of the problem grow. In contrast, meta-heuristic algorithms offer the potential to find near-optimal solutions more efficiently, making them a valuable approach for large-scale problems. This study focuses on three algorithms: Genetic Algorithm (GA), Teaching-Learning-Based Optimization (TLBO), and an improved variant of TLBO known as ITLBO. Each of these algorithms was applied to the transportation problem, and their performance was evaluated in terms of solution quality, convergence speed, and computational efficiency. The results demonstrate that while all three algorithms can solve the transportation problem, ITLBO consistently outperforms GA and TLBO {in terms of accuracy}. Specifically, ITLBO shows a faster convergence to the optimal solution and a significant reduction in execution time, particularly for large problem instances. The improved efficiency of ITLBO makes it a more practical and scalable option for solving complex transportation problems.

نویسندگان

Ahmad Aliyari Boroujeni

Department of Mathematics and Computer Science, Faculty of Sciences, University of Zanjan, Zanjan, Iran

Mohammad Reza Ghaemi

Department of Mathematics and Computer Science, Faculty of Sciences, University of Zanjan, Zanjan, Iran

Reza Pourgholi

School of Mathematics and Computer Sciences, Damghan University, P.O. Box ۳۶۷۱۵-۳۶۴, Damghan, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • H. Ceylan and M. G. Bell, Genetic algorithm solution for ...
  • H. Bulut, Multiloop transportation simplex algorithm, Optimization Methods and Software, ...
  • H. Arsham and A. Kahn, A simplex-type algorithm for general ...
  • A. Abadi, T. Rajabioun, and P. A. Ioannou, Traffic flow ...
  • M. Mesbah, M. Sarvi, and G. Currie, Optimization of transit ...
  • K. Braekers, K. Ramaekers, and I. Van Nieuwenhuyse, The vehicle ...
  • F. Alesiani, G. Ermis, and K. Gkiotsalitis, Constrained clustering for ...
  • K. C. Tan, L. H. Lee, Q. Zhu, and K. ...
  • W. Ho, G. T. Ho, P. Ji, and H. C. ...
  • Shivani and D. Rani, Multi-objective multi-item four dimensional green transportation ...
  • S. Wang, H. Zhang, and F. Chu, An effective hybrid ...
  • R. K. Sachan, A realistic and sustainable logistics transportation planning: ...
  • D. Chauhan et al., Offline learning-based competitive swarm optimizer for ...
  • G. Starzec, M. Starzec, L. Rutkowski, M. Kisiel-Dorohinicki, and A. ...
  • S. Sankul, N. Supattananon, R. Akararungruangkul, and N. Wichapa, An ...
  • A. A. Boroujeni, R. Pourgholi, and S. H. Tabasi, Solving ...
  • A. Aliyari Boroujeni, R. Pourgholi, and S. H. Tabasi, A ...
  • S. T. Rachev and L. Rüschendorf, Mass Transportation Problems: Volume ...
  • J. H. Holland, Adaptation in natural and artificial systems: an ...
  • R. V. Rao, V. J. Savsani, and D. P. Vakharia, ...
  • نمایش کامل مراجع