Improving Financial Technology (FinTech) in Banks Using Process Mining Algorithms

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 44

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_MSEEE-3-3_006

تاریخ نمایه سازی: 21 اردیبهشت 1404

چکیده مقاله:

Many analysts believe that the future of the banking industry depends on the generalization and growth of fintechs. The growth and expansion of fintechs in the world indicate their importance in the banking industry. Today, it is important to know more about fintechs and its different parts [۱]. Process mining is a new approach based on information technology that seeks to identify and improve the actual process model. Process mining is a chain of events encompassing the beginning and ending stages of a specific activity. Process mining aims to discover, monitor, and improve real-world processes by knowledge extraction from data stored in information systems. Process mining is on the list of new research disciplines, something between data mining and process modeling. In this method, the main ideas are very important, so discovering, monitoring, and enhancing business processes are three important factors in process mining science. This study contributes to the growing body of knowledge in process mining by highlighting the importance of adapting existing algorithms and methodologies to fit the specific needs and conditions of the banking industry, particularly in developing regions. In this research, in the first step, manual and system data related to the studied process were combined to ensure the comprehensiveness of the model, and the level of model details was adjusted based on the opinions of process owners before performing the mining process. After converting the integrated data file to the event log, the process model was implemented using ProM ۵.۲ and Genetics, Heuristics, Alpha ++, and Alpha algorithms. The results showed that the genetic algorithm has the best performance in issuing credit cards.

نویسندگان

Ali Haghi Nojehdeh

Department of Management, Hamedan Branch, Islamic Azad University, Hamedan, Iran.

Mansour Esmaeilpour

Department of Computer Engineering, Hamedan Branch, Islamic Azad University, Hamedan, Iran.

Behrooz Bayat

Department of Knowledge and Information Science, Hamedan Branch, Islamic Azad University, Hamedan, Iran.

Alireza Isfandyari Moghaddam

Department of Knowledge and Information Science, Hamedan Branch, Islamic Azad University, Hamedan, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Anshari, M., Almunawar, M. N. and Masri, M. (۲۰۱۹). “An ...
  • Gomber, P., Koch, J. A. and Siering, M. (۲۰۱۷). “Digital ...
  • Liu, J., Li, X. & Wang, S. (۲۰۲۰). What have ...
  • Haghshenas, Farzaneh. (۲۰۰۹). Credit Card Survey in Iran, ۳rd World ...
  • Elhami, Erfan and Shams Aliei, Fereydoun and Farahani. (۲۰۱۸). Investigating ...
  • Ereydoun Shams Ali, Leila Heidari, Mahmoud Neshati. (۲۰۲۰). An Approach ...
  • Mostafaei Dolatabad, Khadijeh, and Azar, Adel and Moqbel Ba'arz, Abbas ...
  • Van der Aalst, W. M. (۲۰۲۲). Process mining: a ۳۶۰-degree ...
  • Brock, J., Brennig, K., Löhr, B., Bartelheimer, C., von Enzberg, ...
  • Bocciarelli, P., & D’Ambrogio, A. (۲۰۲۴). Simulation-based predictive process mining ...
  • Jochen De Weerdt, J., A. Schupp, A.Vanderloock, and B. Baesens. ...
  • Maldonado, A., Frey, C. M., Tavares, G. M., Rehwald, N., ...
  • Jans M., J.M. van der Werf, N. Lybaert and K. ...
  • نمایش کامل مراجع