Analysis of the changes in the distinguishing features in electroencephalogram signal processing for heroin addicts

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 68

فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_MJEE-19-1_014

تاریخ نمایه سازی: 16 اردیبهشت 1404

چکیده مقاله:

Heroin is a highly addictive drug with devastating effects on various parts of the body, including the digestive system, nervous system, and mental health, and it can lead to premature death. One of the most destructive impacts of heroin use is on the brain. Electroencephalograms (EEG) indicate the brain’s activity in the physiological and psychological states of heroin addicts. Identifying distinguishing features is crucial for processing these signals and determining the differences between the EEGs of healthy individuals and addicts. The frequency and time domain features extracted from different channels of EEG vary, but identifying distinguishing features can aid in better analysis of these signals. This article uses the Davies-Bouldin criterion to determine distinguishing frequency and time domain features. EEGs of heroin addicts (۱۵ individuals) and healthy individuals (۱۵ individuals) were extracted from ۱۶ different channels. The distinguishing feature with the lowest Davies-Bouldin index value was selected. The results of this study show that inpeople addicted to heroin, the frequency power spectrum in the upper alpha subband of the O۱ channel has decreased. Additionally, approximate entropy is increased in the Cz channel of heroin addicts. To evaluate the distinguishing features, support vector machine classification has been used to distinguish addicts from healthy individuals. The sensitivity and accuracy of distinguishing an addicted person from a healthy person in the approximate entropy feature are ۹۱.۵۰% and ۹۱.۸۱%, respectively, and in the power spectrum feature in the upper alpha subband of the O۱ channel, they are ۹۵.۹۲% and ۹۲.۴۰%, respectively. Compared to other studies, the obtained results confirm the distinction and superiority of these features in terms of precision and accuracy. According to the results, the analysis of frequency and time domain features of brain signals can help to better understand the effects of heroin consumption on brain activity. This study may help provide solutions to improve the treatment and prevention of heroin addiction.

نویسندگان

Atefeh Tobieha

Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.

Neda Behzadfar

Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.

Mohammad Reza Yousefi

Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.

Homayoun Mahdavi-Nasab

Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.

Ghazanfar Shahgholian

Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Corominas-Roso, I. Ibern, M. Capdevila, R. Ramon, C. Roncero, J. ...
  • Marvi, J. Haddadnia, M.R.F. Bordbar, “Evaluation of drug abuse on ...
  • R. Yousefi, A. Dehghani, H. Taghaavifar. "Enhancing the accuracy of ...
  • N. Dar, M.U. Akram, R. Yuvaraj, S.G. Khawaja, M. Murugappan, ...
  • M. Hira, D.F. Gillies, “A review of feature selection and ...
  • V. Wankar, P. Shah, R. Sutar, "Feature extraction and selection ...
  • Bolón-Canedo, N. Sánchez-Maroño, A. Alonso-Betanzos, J.M. Benítez, F. Herrera, “A ...
  • Chen, Y. Cai, A. Li, Y. Su, K. Jiang, “EEG ...
  • Sharma, H.K. Meena, "Emerging trends in EEG signal processing: A ...
  • Jain, R. Raja, S. Srivastava, P.C. Sharma, J. Gangrade, R. ...
  • Aziz, J. Dirkaoui, M. Ertel, M. Chakkouch, F. Elomari, "The ...
  • Pandria, L. Kovatsi, A.B. Vivas, P.D. Bamidis. "Resting-state abnormalities in ...
  • Montazeri, M. R., Yousefi, K, Shojaei, & G. Shahgholianm, “Fast ...
  • T, Zeng, S. Li, L. Wu, Z. Feng, X. Fan, ...
  • Zeng, B. Yang, X. Gu, Y. Li, X. Xia, S. ...
  • Liang, Y. Hao, Z. Xu, N. Li and Q. Zhao, ...
  • Y. Wang, R. Kydd, T.A. Wouldes, M. Jensen, B.R. Russell, ...
  • Shourie, M. Firoozabadi, K. Badie, “Neurofeedback training protocols based on ...
  • Jurewicz, K. Paluch, E. Kublik, J. Rogala, M. Mikicin, A. ...
  • H. Franken, C.J. Stam, V.M. Hendriks, W.V.D. Brink, “Neurophysiological evidence ...
  • Hu, Q. Dong, Y. Hao, Q. Zhao, J. Shen, F. ...
  • M. Liu, M. Lucas, F. Badami, W. Wu, A. Etkin, ...
  • Turnip, K.D. Esti, M.F. Amri, A.I. Simbolon, M.A. Suhendra, S. ...
  • Motlagh, F. Ibrahim, R. Rashid, T. Seghatoleslam, H. Habil, “Investigation ...
  • Turnip, S.M. Agung, E.K. Dwi, L.S. Faza, W.L. Simon, A.S. ...
  • Motlagh, F. Ibrahim, R. Rashid, N. Shafiabady, T. Seghatoleslam, H. ...
  • Y. Badr, E.A. Gad, A.A. Mubarak, Y.A. El-Heneedy, A.M. Ibrahim, ...
  • Wang, R. Peng, Q. Liu, H. Peng, “A hybrid classification ...
  • H. Franken, C.J. Stam, V. M. Hendriks, W.V.D. Brink, “Electroencephalographic ...
  • Luo, R. Yang, W. Yang, C. Duan, Y. Deng, J. ...
  • M. Davydov, A.G. Polunina, “Heroin abusers' performance on the Tower ...
  • G. Polunina, D.M. Davydov, “EEG spectral power and mean frequencies ...
  • Seif, M.R. Yousefi, N. Behzadfar, “EEG Spectral Power Analysis: A ...
  • N.S. Kbah, N.K. Al-Qazzaz, S.H. Jaafer, M.K. Sabir, "Epileptic EEG ...
  • Cacciotti, C. Pappalettera, F. Miraglia, P.M. Rossini, F. Vecchio, "EEG ...
  • Bandt, “A new kind of permutation entropy used to classify ...
  • S. Amer, S.B. Belhaouari, "EEG signal processing for medical diagnosis, ...
  • R. Acharya, H. Fujita, V.K. Sudarshan, S. Bhat, J.E. Koh, ...
  • S. Marks, K.V. Saboo, Ç. Topçu, M. Lech, T.P. Thayib, ...
  • R. Yousefi, A. Dehghani, S. Golnejad, M. M. Hosseini, “Comparing ...
  • Puri, S. Nalbalwar, A. Nandgaonkar, A. Wagh. "EEG-based diagnosis of ...
  • Lal, A.V. Chikkankod, L. Longo, “Fractal dimensions and machine learning ...
  • Motamedi-Fakhr, M. Moshrefi-Torbati, M. Hill, C.M. Hill, P.R. White, “Signal ...
  • Liu, Y. Chen, G. Fraga-González, V. Szpak, J. Laverman, R.W. ...
  • Alper, R.J. Chabot, A.H. Kim, L.S. Prichep, E.R. John, "Quantitative ...
  • Shen, H. Niu, Q. Xia, B. Zou, Y. Zheng, Y. ...
  • Talukdar, S.M. Hazarika, J.Q. Gan, "Adaptation of Common Spatial Patterns ...
  • Tobeiha, N. Behzadfar, M.R. Yousefi-Najafabadi, H. Mahdavi-Nasab, G. Shahgholian, "Choosing ...
  • H. Franken, C.J. Stam, V. M. Hendriks, W.V.D. Brink, "Electroencephalographic ...
  • Luo, R. Yang, W. Yang, C. Duan, Y. Deng, J. ...
  • نمایش کامل مراجع