Predicting Anticancer Drug Repurposing Candidates using Knowledge Graphs

سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 38

متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

IBIS13_132

تاریخ نمایه سازی: 10 اردیبهشت 1404

چکیده مقاله:

Drug repurposing (DR) offers a promising and efficient alternative to traditional drug discovery by identifying new therapeutic applications for existing drugs, reducing the time and costs associated with development. This study introduces a novel framework that leverages a new hybrid knowledge graph integrating drug, disease, and protein interactions, combined with a dual-channel Convolutional Neural Network for drug-disease association prediction. The knowledge graph captures complex biological relationships through diverse biomedical data, while the neural network architecture enhances the model's ability to extract meaningful patterns. The framework demonstrates superior performance, achieving an AUC of ۰.۹۸۳۶ and AUPRC of ۰.۹۶۸۶, significantly outperforming state-of-the-art methods. To enhance the reliability of these predictions, molecular docking simulations were conducted, providing crucial biological validation. Integrating advanced machine learning with robust biological validation offers a promising avenue for accelerating drug discovery efforts and addressing critical unmet medical needs.

نویسندگان

Marzieh Khodadadi AghGhaleh

School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran

Rooholah Abedian

School of Engineering Science, College of Engineering, University of Tehran, Iran

Reza Zarghami

Centers of Excellence for Pharmaceutical Processes, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran

Sajjad Gharaghani

Laboratory of Bioinformatics and Drug Design (LBD), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran