Predicting Adverse Drug Reactions with Advanced Machine Learning Techniques

سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 91

متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

IBIS13_115

تاریخ نمایه سازی: 10 اردیبهشت 1404

چکیده مقاله:

Drug design is a complex and resource-intensive process, partly due to the challenge of adverse drug reactions (ADRs), which impacts drug safety and only becomes evident after clinical trials on a drug has already began. In this study, we developed machine learning (ML) methodologies aimed at predicting ADRs by leveraging data from SIDER database, which contain ADR information for approved drugs. ADR data was collected from ۱,۴۳۰ approved drugs. Molecular descriptors, such as polar surface area and molecular weight, were extracted from drug SMILES strings which were obtained from Chembl, and RdKit was used for molecular fingerprinting. We employed several machine learning algorithms, including Support Vector Machine (SVM), Random Forest (RF), and Gradient Boosted Trees (GBT), for ADR classification tasks. To ensure robust evaluation and optimization of these ML methods, we utilized metrics such as accuracy, precision, recall, and F۱-score, after addressing class imbalance using synthetic minority over-sampling technique-nominal continuous (SMOTE-NC). Our results demonstrated that no single algorithm outperformed others in all cases; for example, the best balance between precision and recall for predicting common ADRs might be different from those algorithms for rare ADRs, or some algorithms perform better for some tissues and worse for the others. We suggest the use of ensemble learning to combine the strengths of different algorithms for improved ADR prediction in drug discovery. Future work should focus on optimizing ensemble models and extending the approach to other drug classes.

نویسندگان

Ali Mohammadian

Department Biotechnology, Amol University of Special Modern Technologies, Mazandaran, Amol