A seasonal Integer-Valued AR(۱) model with delaporte marginal distribution
محل انتشار: مجله مدل سازی پیشرفته ریاضی، دوره: 14، شماره: 35
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 5
فایل این مقاله در 25 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JAMFN-14-35_003
تاریخ نمایه سازی: 8 اردیبهشت 1404
چکیده مقاله:
Real-count data time series often show the phenomenon of over-dispersion. In this paper, we introduce the first-order integer-valued autoregressive process with seasonal structure. The univariate marginal distribution is derived from the Delaporte distribution and the innovations are convolution of Poisson with α-fold zero modified geometric distribution, based on binomial thinning operator, for modeling integer-valued time series with over-dispersion. Some properties of the model are derived. The methods of Yule-Walker, conditional least squares, and conditional maximum likelihood are used to estimate the parameters. The Monte Carlo experiment is conducted to evaluate the performances of these estimators in finite samples. At the end, this model is illustrated using a real data set and is compared to some INAR(۱) models.
کلیدواژه ها:
Seasonality ، α-fold zero modified geometric ، Count time series ، Delaporte distribution ، INAR(۱) models ، overdispersion
نویسندگان
Maryam Shalbaf
Department of Statistics, Faculty of Mathematics and Computer Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
Gholamali Parham
Department of Statistics, Faculty of Mathematics and Computer Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
Rahim Chinipardaz
Department of Statistics, Faculty of Mathematics and Computer Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.