Oil Development Engineering Company, Tehran, Iran
محل انتشار: مجله علوم و فن آوری نفت، دوره: 14، شماره: 2
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 64
فایل این مقاله در 19 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JPSTR-14-2_006
تاریخ نمایه سازی: 7 اردیبهشت 1404
چکیده مقاله:
This paper delves into the transformative implications of Digital Twin (DT) technology on pipeline management within Industry ۴.۰, emphasizing its pivotal role in ensuring integrity, efficiency, and leak detection for oil, gas, and water transportation. The proposed pipeline management platform adopts a conceptual DT architecture, integrating key components such as the Asset Administration Shell (AAS), Admin-Shell-IO, Node-RED, Apache StreamPipes, SimCenter, MATLAB, and Ignition software.The platform focuses on automation, operational optimization, safety, and regulatory compliance through this integration. To achieve these goals, the paper introduces the Modified Real-Time Transient Modeling (MRTTM) framework, which aims to swiftly and accurately detect and locate leaks. Furthermore, the operational procedure of this framework involves three key stages. In the “Data Collection” phase, sensor data are monitored by observing nodes. In the subsequent “Detection” stage, leaks are identified, and in the concluding “Decision-making” module, the exact magnitude and location of the leakage are determined using MRTTM. Leveraging a hybrid approach that combines the Extended Kalman Filter (EKF), Real-Time Transient Modeling (RTTM), and machine learning algorithms, the framework offers accurate insights into the pipeline’s operational status. Moreover, machine learning models, including K-nearest neighbors (KNN) and support vector machines (SVM), enhance anomaly detection precision, allowing for early identification and localization of potential leaks.Ultimately, the proposed framework brings several key benefits to pipeline management, including early anomaly detection, real-time data integration, predictive maintenance, and regulatory compliance. By identifying potential leaks and anomalies early on, operators can take measures to prevent failures, respond quickly to disruptions, and comply with environmental and safety regulations.
کلیدواژه ها:
Pipeline Management ، Theft/Leak detection ، Industry ۴.۰ ، Digital twin ، Asset Administration Shell ، Modified Real-Time Transient Modelin
نویسندگان
Seyed Ali Mohammad Tajalli
Department of Electrical Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
Mazda Moattari
Department of Electrical Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran\Mechateronic & Artificial Intelligence Research Center, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
Vahid Naghavi
Engineering Devision, Reseach Institute of Petroleum Industry, Tehran, Iran
Mohammad Reza Salehizadeh
Department of Electrical Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :