Optimal Allocation of Renewable Energy Sources to Enhance Distribution System Reliability with Confidence Interval Considerations
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 34
فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JOAPE-13-4_008
تاریخ نمایه سازی: 7 اردیبهشت 1404
چکیده مقاله:
Due to ever-increasing energy requirements, modern distribution systems are integrated with renewable energy sources (RESs), such as wind turbines and photovoltaics. They also bring economic, environmental, and technical advantages. However, they face the network operator with decision-making challenges due to their uncertain nature. Modern distribution systems usually operate at safety margins, and any contingency may lead to power supply losses. In this regard, any attempts to increase the planner/operator's awareness of the network situation will help improve the decision quality. This paper determines the optimal locations of the RESs to enhance the expected power not served as a reliability index. Besides, it reduces power losses and minimizes the ۹۵\% confidence interval of power losses, as much as possible for having more awareness of network states. The K-medoids data clustering method is applied to handle the uncertainties of the RESs and demand loads. The MOPSO, NSGA II, and MOGWO algorithms are used to solve the proposed problem. The efficiency of the proposed approach is tested on the IEEE standard ۳۳-bus and ۱۱۸-bus distribution networks. The obtained results show that it is possible to reach a better confidence interval while keeping the losses and reliability index at a desired level. Considering solutions with identical losses and reliability index, the confidence interval of power losses using the MOPSO algorithm is ۶.۸۶% and ۳۹.۸۲% better rather than the NSGA II and MOGWO algorithms in the ۳۳-bus distribution network and it is ۳۰.۲۳% and ۱۲۹.۶۳% better in the ۱۱۸-bus distribution network.
کلیدواژه ها:
نویسندگان
Mahdi Hajibeigy
Department of Power Engineering, Faculty of Electrical and Computer Engineering, Urmia University, Urmia, Iran.
Vahid Talavat
Department of Power Engineering, Faculty of Electrical and Computer Engineering, Urmia University, Urmia, Iran.
Sadjad Galvani
Department of Power Engineering, Faculty of Electrical and Computer Engineering, Urmia University, Urmia, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :