Assessment of GEP and ANN for Predicting Suspended Sediment Load: A Case Study of Ghatoor and Aland Rivers, West Azerbaijan, Iran
محل انتشار: مجله مهندسی هیدرولیک و آب، دوره: 1، شماره: 2
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 79
فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JHWE-1-2_002
تاریخ نمایه سازی: 3 اردیبهشت 1404
چکیده مقاله:
Estimation of the volume of suspended sediment load of rivers, especially when dam constructed on it, is one of the tremendous challenges that civil engineers faced. It is crucial to accurately predict the suspended sediment load to effectively mitigate the negative consequences of this phenomenon. To estimate the total suspended sediment accumulated behind the Aland and Ghatoor dams, two models of artificial intelligence, Gene Expression Programming (GEP) and Artificial Neural Network (ANN), were employed in this study. The performance of these two AI models compared with the traditional method, Sediment Rating Curve (SRC), for estimating the suspended sediment volume using hydrometric stations from ۱۹۶۹ to ۲۰۱۷. Unfortunately, the appropriate data from ۲۰۱۷ to the present is not available from authorities of the West Azerbaijan province, so inevitably, we used the hydrologic records till the end of the year ۲۰۱۷ in this article. Two statistical indices were used to evaluate the models: the coefficient of determination (R-squared) and the Mean Absolute Error (MAE). Based on these indices, the intelligent models performed better than the SRC in estimating the suspended sediment volume. In comparing the GEP and ANN models, the performance criteria show that the ANN model produces better results. For the Ghatoor River, the performance indicators of the ANN model were MAE=۹۹۳.۱ ton/day and R^۲=۰.۹۱۰, which is ۴۵% and ۴۳% higher than the GEP model and SRC method, respectively. For Aland River, the performance indicators of the ANN model were MAE=۵۱۹.۲ ton/day and R^۲=۰.۹۶۱, which is ۱۲% and ۵۷% higher than the GEP model and SRC method, respectively. In conclusion, for predicting the suspended sediment load in Ghatoor and Aland Rivers, the ANN model can be the best choice for this purpose.
کلیدواژه ها:
نویسندگان
Emad Fardoost
Department of Civil Engineering, Faculty of Civil Engineering, University of Tehran, Iran.
Majid Dastgahi
West Azerbaijan Regional Water Authority, Urmia, Iran.
Reyhane Nourali
Department of Soil Science, Faculty of Agriculture, Isfahan University of Technology.
Elham Ayati
Master of Science in Power Engineering, Khazar Holding, Mashin Sazi Khorram Abad, Tehran, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :