Assessment of GEP and ANN for Predicting Suspended Sediment Load: A Case Study of Ghatoor and Aland Rivers, West Azerbaijan, Iran

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 79

فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JHWE-1-2_002

تاریخ نمایه سازی: 3 اردیبهشت 1404

چکیده مقاله:

Estimation of the volume of suspended sediment load of rivers, especially when dam constructed on it, is one of the tremendous challenges that civil engineers faced. It is crucial to accurately predict the suspended sediment load to effectively mitigate the negative consequences of this phenomenon. To estimate the total suspended sediment accumulated behind the Aland and Ghatoor dams, two models of artificial intelligence, Gene Expression Programming (GEP) and Artificial Neural Network (ANN), were employed in this study. The performance of these two AI models compared with the traditional method, Sediment Rating Curve (SRC), for estimating the suspended sediment volume using hydrometric stations from ۱۹۶۹ to ۲۰۱۷. Unfortunately, the appropriate data from ۲۰۱۷ to the present is not available from authorities of the West Azerbaijan province, so inevitably, we used the hydrologic records till the end of the year ۲۰۱۷ in this article. Two statistical indices were used to evaluate the models: the coefficient of determination (R-squared) and the Mean Absolute Error (MAE). Based on these indices, the intelligent models performed better than the SRC in estimating the suspended sediment volume. In comparing the GEP and ANN models, the performance criteria show that the ANN model produces better results. For the Ghatoor River, the performance indicators of the ANN model were MAE=۹۹۳.۱ ton/day and R^۲=۰.۹۱۰, which is ۴۵% and ۴۳% higher than the GEP model and SRC method, respectively. For Aland River, the performance indicators of the ANN model were MAE=۵۱۹.۲ ton/day and R^۲=۰.۹۶۱, which is ۱۲% and ۵۷% higher than the GEP model and SRC method, respectively. In conclusion, for predicting the suspended sediment load in Ghatoor and Aland Rivers, the ANN model can be the best choice for this purpose.

نویسندگان

Emad Fardoost

Department of Civil Engineering, Faculty of Civil Engineering, University of Tehran, Iran.

Majid Dastgahi

West Azerbaijan Regional Water Authority, Urmia, Iran.

Reyhane Nourali

Department of Soil Science, Faculty of Agriculture, Isfahan University of Technology.

Elham Ayati

Master of Science in Power Engineering, Khazar Holding, Mashin Sazi Khorram Abad, Tehran, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Alijanpour Shalmani, A., Vaez, A.R., Tabatabaei, M.R.J.E.R.R., ۲۰۲۲. Prediction of ...
  • Allawi, M.F., Sulaiman, S.O., Sayl, K.N., Sherif, M., El-Shafie, A., ...
  • Aytek, A., Kişi, Ö.J.J.o.h., ۲۰۰۸. A genetic programming approach to ...
  • Bazoobandi, A., Emamgholizadeh, S., Ghorbani, H.J.E.J.o.E., Engineering, C., ۲۰۲۲. Estimating ...
  • Bilotta, G.S., Brazier, R.E., ۲۰۰۸. Understanding the influence of suspended ...
  • Emamgholizadeh, S., ۲۰۱۲. Neural network modeling of scour cone geometry ...
  • Emamgholizadeh, S. et al., ۲۰۱۷. Estimation of soil dispersivity using ...
  • Emamgholizadeh, S., Bateni, S.M., Nielson, J.R., ۲۰۱۸. Evaluation of different ...
  • Emamgholizadeh, S., Fathi-Moghdam, M., ۲۰۱۴. Pressure flushing of cohesive sediment ...
  • Emamgholizadeh, S., Karimi Demneh, R., ۲۰۱۹. A comparison of artificial ...
  • Emamgolizadeh, S., Bateni, S., Shahsavani, D., Ashrafi, T., Ghorbani, H., ...
  • Emamgolizadeh, S., Bateni, S., Shahsavani, D., Ashrafi, T., Ghorbani, H.J.J.o.H., ...
  • Fathi-Moghadam, M., Emamgholizadeh, S., Bina, M., Ghomeshi, M., ۲۰۱۰. Physical ...
  • Fausett, L.V., ۲۰۰۶. Fundamentals of neural networks: architectures, algorithms and ...
  • Ferreira, C., ۲۰۰۶. Automatically defined functions in gene expression programming. ...
  • Ferreira, C., ۲۰۰۶. Gene expression programming: mathematical modeling by an ...
  • Gholipoor, M. et al., ۲۰۱۲. The optimization of root nutrient ...
  • Horowitz, A.J.J.H.p., ۲۰۰۳. An evaluation of sediment rating curves for ...
  • Jansson, M.B.J.J.o.H., ۱۹۹۶. Estimating a sediment rating curve of the ...
  • Khan, M.A., Stamm, J., Haider, S.J.A.S., ۲۰۲۱. Assessment of soft ...
  • Khan, Q., Hayder, G., Al-Zwainy, F.M., ۲۰۲۳. River Water Suspended ...
  • Khosravi, K., Golkarian, A., Melesse, A.M., Deo, R.C., ۲۰۲۲. Suspended ...
  • Kisi, O., Shiri, J.J.C., Geosciences, ۲۰۱۲. River suspended sediment estimation ...
  • Koza, J.R.J.S., computing, ۱۹۹۴. Genetic programming as a means for ...
  • McCulloch, W.S., Pitts, W.J.T.b.o.m.b., ۱۹۴۳. A logical calculus of the ...
  • Nagy, H., Watanabe, K., Hirano, M.J.J.o.H.E., ۲۰۰۲. Prediction of sediment ...
  • Olyaie, E., Banejad, H., Chau, K.-W., Melesse, A.M.J.E.m., assessment, ۲۰۱۵. ...
  • Parhizkar, S., Ajdari, K., Kazemi, G.A., Emamgholizadeh, S., ۲۰۱۵. Predicting ...
  • Salas, J.D., ۱۹۸۰. Applied modeling of hydrologic time series. Water ...
  • Senthil Kumar, A., Ojha, C., Goyal, M.K., Singh, R., Swamee, ...
  • Shamaei, E., Kaedi, M.J.A.S.C., ۲۰۱۶. Suspended sediment concentration estimation by ...
  • Syvitski, J.P., Morehead, M.D., Bahr, D.B., Mulder, T.J.W.r.r., ۲۰۰۰. Estimating ...
  • Zhang, W., Wei, X., Jinhai, Z., Yuliang, Z., Zhang, Y.J.C.S.R., ...
  • نمایش کامل مراجع